多输出回归监督描述符学习supervised descriptor learning cvpr paperzhen.pdf
SupervisedDescriptorLearningforMulti-OutputRegression
XiantongZhenZhijieWang
UniversityofWesternOntario,London,ON,CanadaGEHealthcare,London,ON,Canada
xzhen7@uwo.cazhijie@ualberta.ca
MengyangYuShuoLi
NorthumbriaUniversity,Newcastle,UnitedKingdomGEHealthcare,London,ON,Canada
mengyang.yu@northumbria.ac.ukshuo.li@
ousmultivariatetargetsratherthandiscreteclasslabels[4].
However,multi-outputregressionhasrecentlyemergedand
Descriptorlearninghasrecentlydrawnincreasingatten-extensivelystudiedformanycomputervisiontasks,e.g.,
tionincomputervision,Existingalgorithmsaremainlyde-headposeestimation[15],humanbodyposeestimation
velopedforclassificationratherthanforregressionwhich[29]andviewpointestimation[28].Moreover,manyre-
howeverhasrecentlyemergedasapowerfultooltosolveasearchershavefoundtheirapplications,e.g.,camerarelo-
broadrangeofproblems,e.g.,headposeestimation.Inthiscalization[24,13]andcardiacvolumeestimation[1,38],
paper,weproposeanovelsuperviseddescriptorlearningcanbeelaboratelysolvedbytransferringtheoriginalprob-
(SDL)algorithmtoestablishadiscriminativeandcompactlemintoamulti-outputregressiontask,whichnotonlysub-
featurerepresentationformulti-outputregression.Byfor-