image super-resolution using very deep residual channel attention networks使用非常深残留通道注意网络图像超分辨率.pdf
ImageSuper-ResolutionUsingVeryDeep
ResidualChannelAttentionNetworks
YulunZhang1[0000−0002−2288−5079],KunpengLi1[0000−0001−5805−793X],Kai
Li1[0000−0002−9027−0914],LichenWang1[0000−0002−3741−9492],Bineng
Zhong1[0000−0003−3423−1539],andYunFu1,2[0000−0002−8588−5084]
1DepartmentofECE,NortheasternUniversity,USA
2CollegeofComputerandInformationScience,NortheasternUniversity,USA
{yulun100,li.kai.gml,wanglichenxj}@,
bnzhong@,{kunpengli,yunfu}@
.Convolutionalneuralnetwork(CNN)depthisofcrucialim-
portanceforimagesuper-resolution(SR).However,weobservethat
deepernetworksforimageSRaremoredifficulttotrain.Thelow-
resolutioninputsandfeaturescontainabundantlow-frequencyinforma-
tion,whichistreatedequallyacrosschannels,hencehinderingtherep-
resentationalabilityofCNNs.Tosolvetheseproblems,weproposethe
verydeepresidualchannelattentionnetworks(RCAN).Specifically,we
proposearesidualinresidual(RIR)structuretoformverydeepnetwork,
whichconsistsofseveralresidualgroupswithlongskipconnections.Each
residualgroupcontainssomeresidualblockswithshortskipconnec-
tions.Meanwhile,RIRallowsabundantlow-frequencyinformationtobe
bypassedthroughmultipleskipconnections,makingthemainnetwork
focusonlearninghigh-frequencyinformation.Furthermore,weproposea
channelattentionmechanismtoadaptivelyrescalechannel-wisefeatures
byconsideringinterdependenciesamongchanneltensiveexperiments
showthatourRCANachievesbetteraccuracyandvisualimprovements
againststate-of-the-artmethods.
Keywords:Sup