串行通信概念与串行总线.doc
文本预览下载声明
串行通信概念
所谓“串行通信”是指外设和计算机间使用一根数据信号线(另外需要地线,可能还需要控制线),数据在一根数据信号线上一位一位地进行传输,每一位数据都占据一个固定的时间长度。如图1-1所示。这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,当然,其传输速度比并行传输慢。
由于CPU与接口之间按并行方式传输,接口与外设之间按串行方式传输,因此,在串行接口中,必须要有“接收移位寄存器”(串→并)和“发送移位寄存器”(并→串)。典型的串行接口的结构如1-2所示。
在数据输入过程中,数据1位1位地从外设进入接口的“接收移位寄存器”,当“接收移位寄存器”中已接收完1个字符的各位后,数据就从“接收移位寄存器”进入 “数据输入寄存器”。CPU从“数据输入寄存器”中读取接收到的字符。(并行读取,即D7~D0同时被读至累加器中)。“接收移位寄存器”的移位速度由“ 接收时钟”确定。
在数据输出过程中,CPU把要输出的字符(并行地)送入“数据输出寄存器”,“数据输出寄存器”的内容传输到“发送移位寄存器”,然后由“发送移位寄存器”移位,把数据1位1位地送到外设。“发送移位寄存器”的移位速度由“发送时钟”确定。
接口中的“控制寄存器”用来容纳CPU送给此接口的各种控制信息,这些控制信息决定接口的工作方式。
“状态寄存器”的各位称为“状态位”,每一个状态位都可以用来指示数据传输过程中的状态或某种错误。例如,用状态寄存器的D5位为“1”表示“数据输出寄存器”空,用D0位表示“数据输入寄存器满”,用D2位表示“奇偶检验错”等。
能够完成上述“串- -并”转换功能的电路,通常称为“通用异步收发器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251,16550.
******
SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 UART:通用异步串行口。按照标准波特率完成双向通讯,速度慢 SPI:一种串行传输方式,三线制,网上可找到其通信协议和用法的 3根线实现数据双向传输串行外围接口 Serial peripheral interface UART(Universal Asynchronous Receiver/Transmitter):通用异步收发器。UART是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了RS-232C数据终 端设备接口,这样计算机就可以和调制解调器或其它使RS-232C接口的串行设备通信了 。作为接口的一部分,UART还提供以下功能: 将由计算机内部传送过来的并行数据转换为输出的串行数据流。将计算机外部来的串行 数据转换为字节,供计算机内部使用并行数据的器件使用。在输出的串行数据流中加入 奇偶校验位,并对从外部接收的数据流进行奇偶校验。在输出数据流中加入启停标记, 并从接收数据流中删除启停标记。处理由键盘或鼠标发出的中断信号(键盘和鼠票也是 串行设备)。可以处理计算机与外部串行设备的同步管理问题。有一些比较高档的UART 还提供输入输出数据的缓冲区,现在比较新的UART是16550,它可以在计算机需要处理数 据前在其缓冲区内存储16字节数据,而通常的UART是8250。现在如果您购买一个内置的 调制解调器,此调制解调器内部通常就会有16550 UART。 I2C:能用于替代标准的并行总线,能连接的各种集成电路和功能模块。I2C是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存。
方C总线: I2C总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。I2C总线的另一个优点是,它支持多主控(multimastering), 其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。 UART: 单端,远距离传输。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时
显示全部