文档详情

C语言课件-Lect_chap10_函数与程序结构.ppt

发布:2017-05-31约1.02万字共51页下载文档
文本预览下载声明
例10-4 写输出结果 # include stdio.h long fib(int g) { switch(g){ case 0: return(0); case 1: case 2: return(2); } printf(g=%d,, g); return ( fib(g-1) + fib(g-2) ); } void main() { long k; k = fib(4); printf(k=%ld\n, k); } fib(g) = 0 g=0 fib(g) = 2 g=1, 2 fib(g) = fib(g-1)+fib(g-2) g=3 g=4, g=3, k=6 如何求Fibonacci数列? 递归式 递归出口 10.2.3 递归程序设计 用递归实现的问题,满足两个条件: 问题可以逐步简化成自身较简单的形式(递归式) n! = n * (n-1)! n n-1 Σi = n +Σ i i=1 i=1 递归最终能结束(递归出口) 两个条件缺一不可 解决递归问题的两个着眼点 例10-5 汉诺(Hanoi)塔 将64 个盘从座A搬到座B (1) 一次只能搬一个盘子 (2) 盘子只能插在A、B、C三个杆中 (3) 大盘不能压在小盘上 A B C 分析 A B C 分析 A B C A B C n n-1 分析 A B C A B C n n-1 算法 hanio(n个盘,A→B) // C为过渡 { if (n == 1) 直接把盘子A→B else{ hanio(n-1个盘,A→C) // B为过渡 把n号盘 A→B hanio(n-1个盘,C→B) // A为过渡 } } A B C n-1 函数 /* 搬动n个盘,从a到b,c为中间过渡 */ void hanio(int n, char a, char b, char c) { if (n == 1) printf(%c--%c\n, a, b); else{ hanio(n-1, a, c, b); printf(%c--%c\n, a, b); hanio(n-1, c, b, a); } } hanio(n个盘,A→B) // C为过渡 { if (n == 1) 直接把盘子A→B else{ hanio(n-1个盘, A→C) 把n号盘 A→B hanio(n-1个盘, C→B) } } 源程序 /* 搬动n个盘,从a到b,c为中间过渡 */ void hanio(int n, char a, char b, char c) { if (n == 1) printf(%c--%c\n, a, b); else{ hanio(n-1, a, c, b); printf(%c--%c\n, a, b); hanio(n-1, c, b, a); } } int main(void) { int n; printf(input the number of disk: ); scanf(%d, n); printf(the steps for %d disk are:\n,n); hanio(n, a, ‘b, ‘c) ; return 0; } 10.3 宏定义 #define 宏名标识符 宏定义字符串 编译时,把程序中所有与宏名相同的字符串,用宏定义字符串替代 #define PI 3.14 #define arr_size 4 说明: 宏名一般用大写字母,以与变量名区别 宏定义不是C语句,后面不得跟分号 宏定
显示全部
相似文档