Java教程-实现一致性Hash算法深入研究.docx
文本预览下载声明
一致性Hash算法的具体原理这里再次贴上:先构造一个长度为2?32?的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 2?32?-1])将服务器节点放置在这个Hash环上,然后根据数据的Key值计算得到其Hash值(其分布也为[0, 2?32?-1]),接着在Hash环上顺时针查找距离这个Key值的Hash值最近的服务器节点,完成Key到服务器的映射查找。这种算法解决了普通余数Hash算法伸缩性差的问题,可以保证在上线、下线服务器的情况下尽量有多的请求命中原来路由到的服务器。当然,万事不可能十全十美,一致性Hash算法比普通Hash算法更具有伸缩性,但是同时其算法实现也更为复杂,本文就来研究一下,如何利用Java代码实现一致性Hash算法。在开始之前,先对一致性Hash算法中的几个核心问题进行一些探究。数据结构的选取一致性Hash算法最先要考虑的一个问题是:构造出一个长度为2?32?的整数环,根据节点名称的Hash值将服务器节点放置在这个Hash环上。那么,整数环应该使用何种数据结构,才能使得运行时的时间复杂度最低?首先说明一点,关于时间复杂度, 常见的时间复杂度与时间效率的关系有如下的经验规则:O(1) O(log?2?N) O(n) O(N * log?2?N) O(N?2?) O(N?3?) 2N 3N N!一般来说,前四个效率比较高,中间两个差强人意,后三个比较差(只要N比较大,这个算法就动不了了)。OK,继续前面的话题,应该如何选取数据结构,我认为有以下几种可行的解决方案。1、解决方案一:排序+List我想到的第一种思路是:算出所有待加入数据结构的节点名称的Hash值放入一个数组中,然后使用某种排序算法将其从小到大进行排序,最后将排序后的数据放入List中,采用List而不是数组是为了结点的扩展考虑。之后,待路由的结点,只需要在List中找到第一个Hash值比它大的服务器节点就可以了 ,比如服务器节点的Hash值是[0,2,4,6,8,10],带路由的结点是7,只需要找到第一个比7大的整数,也就是8,就是我们最终需要路由过去的服务器节点。如果暂时不考虑前面的排序,那么这种解决方案的时间复杂度:(1)最好的情况是第一次就找到,时间复杂度为O(1)(2)最坏的情况是最后一次才找到,时间复杂度为O(N)平均下来时间复杂度为O(0.5N+0.5),忽略首项系数和常数,时间复杂度为O(N)。但是如果考虑到之前的排序,我在网上找了张图,提供了各种排序算法的时间复杂度:看得出来,排序算法要么稳定但是时间复杂度高、要么时间复杂度低但不稳定,看起来最好的归并排序法的时间复杂度仍然有O(N * logN),稍微耗费性能了一些。2、解决方案二:遍历+List既然排序操作比较耗性能,那么能不能不排序?可以的,所以进一步的,有了第二种解决方案。解决方案使用List不变,不过可以采用遍历的方式:(1)服务器节点不排序,其Hash值全部直接放入一个List中(2)带路由的节点,算出其Hash值,由于指明了”顺时针”,因此遍历List,比待路由的节点Hash值大的算出差值并记录,比待路由节点Hash值小的忽略(3)算出所有的差值之后,最小的那个,就是最终需要路由过去的节点在这个算法中,看一下时间复杂度:1、最好情况是只有一个服务器节点的Hash值大于带路由结点的Hash值,其时间复杂度是O(N)+O(1)=O(N+1),忽略常数项,即O(N)2、最坏情况是所有服务器节点的Hash值都大于带路由结点的Hash值,其时间复杂度是O(N)+O(N)=O(2N),忽略首项系数,即O(N)所以,总的时间复杂度就是O(N)。其实算法还能更改进一些:给一个位置变量X,如果新的差值比原差值小,X替换为新的位置,否则X不变。这样遍历就减少了一轮,不过经过改进后的算法时间复杂度仍为O(N)。总而言之,这个解决方案和解决方案一相比,总体来看,似乎更好了一些。3、解决方案三:二叉查找树抛开List这种数据结构,另一种数据结构则是使用?二叉查找树?。对于树不是很清楚的朋友可以简单看一下这篇文章树形结构。当然我们不能简单地使用二叉查找树,因为可能出现不平衡的情况。平衡二叉查找树有AVL树、红黑树等,这里使用红黑树,选用红黑树的原因有两点:1、红黑树主要的作用是用于存储有序的数据,这其实和第一种解决方案的思路又不谋而合了,但是它的效率非常高2、JDK里面提供了红黑树的代码实现TreeMap和TreeSet另外,以TreeMap为例,TreeMap本身提供了一个tailMap(K fromKey)方法,支持从红黑树中查找比fromKey大的值的集合,但并不需要遍历整个数据结构。使用红黑树,可以使得查找的时间复杂度降低为O(logN
显示全部