初中数学思想方法的教学与应用精选.ppt
文本预览下载声明
7、(08湖北恩施州) 如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x. (1)用含x的代数式表示AC+CE的长; (2)请问点C满足什么条件时,AC+CE的值最小? (3)根据(2)中的规律和结论,请构图求出代数式 的最小值. 1、 如图, 中,BC=4, P为BC上一点,过点P作PD//AB,交AC于D。连结AP,问点P在BC上何处时, ⊿APD 面积最大? (2) 过P作y轴的垂线PA,垂足为A.点T为坐标系中的一点。以点A.O.P.T为顶点的四边形为平行四边形,请写出点T的坐标? 0 . P A x y 0 . P A (3) 过P作y轴的垂线PA,垂足为A.点T为坐标轴上的一点。以P.O.T 为顶点的三角形与△AOP相似,请写出点T的坐标? 如图,边长为2的正方形ABCD中,顶点A的坐标是(0,2).一次函数y=x+t的图象l随t的不同取值变化时,正方形中位于l的右下方部分的图形面积为S.写出S与t的函数关系式. (2011中考)22、如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由. (3)当t为何值时,△DEF为直角三角形?请说明理由. 转化与化归思想 化归就是转化与归结的简称,所谓化归就是将所要解决的问题转化归结为另一个比较容易解决的问题或已经解决的问题。具体来说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂问题”转化为“简单问题”。 教学体现 多边形内角和的探索 整式乘法运算法则探索 直线与圆的位置关系、圆与圆的位置关系探索 分式方程的解法、多元方程(组)的解法、一元二次方程的解法 几何实体与其三视图 应 用 1、 如图,“回”字形的道路宽为1米,整个“回”字形的长为8米,宽为7米,一个人从入口点A沿着道路中央走到终点B,他共走了 . 8米 7米 B A 2、如图,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成,设中间最小一个正方形边长为1,则这个矩形色块图的面积为 . X X+1 X+2 X+3 X 3、如图所示,AB是半圆的直径,AB=4,C、D为半圆的三等分点,求阴影部分的面积? 4、如图,A是半圆上一个三等分点,B是弧AN的中点,P是直径MN上一动点,⊙O的半径为1,求AP+BP的最小值。 A B M N O P P 方程与函数思想 函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路要确定变化过程的某些量,往往要转化为求出这些量满足的方程,希望通过方程(组)来求得这些量.这就是方程的思想,方程思想是动中求静,研究运动中的等量关系. 教学体现 二次函数求最值 解直角三角形的相关问题 最大利润问题 最佳分配方案问题 空间与图形的相关问题 根据相关信息求函数关系式 应 用 x 4-x 2、某学校有一段25米长的旧围栏,(如图用AB表示),现打算利用该围栏(或它的一部分)为一边,围成一块面积为100㎡的长方形草坪,如图,其中CD<CF。已知整修旧围栏的费用为每米1.75元,建造新围栏的价格为每米4.5元,设利用旧围栏CF的长度为x米,修建草坪围栏的总费用为y元。 (1)求出y与x之间的函数关系式。 (2)若计划修建费用只有150元,则应利用旧围栏多少米? (3)若计划修建费用只有120元,能否完成该草坪的围栏修建任务?请说明理由。 x 2012中考 czsy6050@126.com * 一节优质课的思考和成长 郑州市第八十五中学 张利红 初中数学思想方法的教学与应用 什么是数学思想和方法 数学思想,就是对数学知识的本质的认识。是从某些具体的数学内容和对数学的认识过程中提练上升数学观点,它在认识活动中被反复运用,带有普遍的指
显示全部