文档详情

散步图.doc

发布:2017-03-26约字共5页下载文档
文本预览下载声明
散 布 图 散布图的基本概念与应用要点 将因果关系所对应变化的数据分别描绘在X—Y轴坐标系上,以掌握两个变量之间是否及相关的程度如何,这种图形叫做“散布图”,也有人称之为“相关图”。 在日常管理中,我们总感觉到一些现象和结果似乎存在某种内在联系,似乎又不存在,似乎关系较紧密,又似乎关系不紧密,但这个感觉有时会产生错误的判定,如果我们收集两个变量的数据(至少30组以上),并描绘在坐标系上,情况则一目了然,且很容易判断原因真假。 如果我们要了解它们的关联与关联程度,必须借助品管七大手法之一的散布图来描绘它。散布图一般有下列四种,分别是: 正相关:当变量X增大时,另一个变量Y也增大。 相关性强,马力与载重的关系; 相关性中,如收入与消费的关系; 相关性弱,如体重与身高的关系。 负相关:当变量X增大时,另一个变量Y却减少。 相关性强,如投资率与失业率的关系; 相关性中,如举重力与年龄的关系; 相关性弱,如血压与年龄的关系。 不相关:变量X(或Y)增大时,另一变量Y(或X)并不改变。 如气压与温度的关系。 曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反面减少,反之亦然。 如记忆与年龄的关系。 应用散布图时注意事项: 是否有异常点,当有异常点出现时,请立即寻找原因,而不能把异常点删除,除非已找到异常的原因。 由于数据的获得常常因为作业人员、方法、材料、设备、和环境等变化,导致数据的相关性受到影响。在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系。 依据技术经验,可能认为没有相关,但经散布图分析却有相关的趋势,此时宜进一步检讨是否有什么原因造成相关。 数据太少时,容易造成误判。 散布图的制作步骤 确定要调查的两个变量,收集相关的最新数据,至少30组以上。 找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴。 将相对应的两个变量,以点的形式标上坐标系。 记入图名、制作者、制作时间等项目。 判读散布图的相关性与相关程度。 在制作散布图时,应注意以下事项: -----两组变量的对应数至少在30个以上,最好50个,100个最佳。 -----找出X、Y轴的最大值与最小值,并以X、Y的最大值及最小值建立X、Y坐标。 -----通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量。 -----散布图绘制后,分析散布图应谨慎,因为散布图是用来理解一个变量与另一个变量之间可能存在的关系,这种关系需要进一步的分析,最好作进一步的调查。 散布图的判读 正相关(点子自左下至右上分布者),如下图: (1)正相关(强) 例:马力与载重量的关系(相关性强) (2)正相关(中度) 例:收入和消费的关系(相关性中) (3)正相关(弱) 例:体重与身高的关系(相关性弱) 负相关(点子自左上至右下分布者),如下图: (4)负相关(强) 例:投资率与失业率的关系(相关强) (5)负相关(中度) 例:举重力与年龄的关系(相关性中) (6)负相关(弱) 例:血压与年龄的关系(相关性弱) 无相关(点子分布无向上或向下倾向者): X与Y之间看不出有何相关关系。 X(或Y)增大时,Y(或X)并不改变。 以上两种情形均称之为无相关,如下图: (7)无相关 (8)无相关 (9)无相关 例:温度与气压的关系(毫不相关) 曲线相关(点子分布不是呈直线倾向,而是弯曲变化着) X开始增大时,Y也随之增大,但达到某一值后,则当X值增大时,Y反而减少,反之亦然,称
显示全部
相似文档