9功、功率、动能定理讲义.doc
文本预览下载声明
功 功率 动能定理
考点一 功的分析与计算
1.功的正负
(1)0≤α90°,力对物体做正功.
(2)90°α≤180°,力对物体做负功,或者说物体克服这个力做了功.
(3)α=90°,力对物体不做功.
2.功的计算:W=Flcos_α
(1)α是力与位移方向之间的夹角,l为物体对地的位移.
(2)该公式只适用于恒力做功.
(3)功是标(填“标”或“矢”)量.
例1 如图1甲所示,一固定在地面上的足够长斜面,倾角为37°,物体A放在斜面底端挡板处,通过不可伸长的轻质绳跨过光滑轻质滑轮与物体B相连接,B的质量M=1 kg,绳绷直时B离地面有一定高度.在t=0时刻,无初速度释放B,由固定在A上的速度传感器得到的数据绘出的物体A沿斜面向上运动的v-t图象如图乙所示.若B落地后不反弹,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:
图1
(1)B下落的加速度大小a;
(2)A沿斜面向上运动的过程中,绳的拉力对A做的功W;
(3)A(包括传感器)的质量m及A与斜面间的动摩擦因数μ;
(4)在0~0.75 s内摩擦力对A做的功.
变式题组
1. [正、负功的判断 ]如图2所示,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a沿水平方向向左做匀加速运动,运动中物体m与斜面体相对静止.则关于斜面对m的支持力和摩擦力的下列说法中错误的是( )
A.支持力一定做正功 B.摩擦力一定做正功
C.摩擦力可能不做功 D.摩擦力可能做负功 图2
2. [变力功、合力的功的计算]如图3所示,长为L的木板水平放置,在木板的A端放置一个质量为m的小物块,现缓慢地抬高A端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v,则在整个过程中,下列说法不正确的是( )
A.木板对小物块做功为mv2 B.摩擦力对小物块做功为mgLsin α 图3
C.支持力对小物块做功为mgLsin α D.滑动摩擦力对小物块做功为mv2-mgLsin α
功的计算方法
(1)恒力做功:
(2)变力做功:
①用动能定理:W=mv-mv.
②当变力的功率P一定时,可用W=Pt求功,如机车恒功率启动时.
③将变力做功转化为恒力做功:
当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程(不是位移)的乘积.如滑动摩擦力做功、空气阻力做功等.
(3)总功的计算:
①先求物体所受的合外力,再求合外力的功;
②先求每个力做的功,再求各功的代数和.
考点二 功率的计算
1.公式P=和P=Fv的区别
P=是功率的定义式,P=Fv是功率的计算式.
2.平均功率的计算方法
(1)利用=.
(2)利用=F·cos α,其中为物体运动的平均速度.
3.瞬时功率的计算方法
(1)利用公式P=Fvcos α,其中v为t时刻的瞬时速度.
(2)P=F·vF,其中vF为物体的速度v在力F方向上的分速度.
(3)P=Fv·v,其中Fv为物体受到的外力F在速度v方向上的分力.
例2 质量为m的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用.力的大小F与时间t的关系如图4所示,力的方向保持不变,则( )
图4
A.3t0时刻的瞬时功率为 B.3t0时刻的瞬时功率为
C.在t=0到3t0这段时间内,水平力的平均功率为 D.在t=0到3t0这段时间内,水平力的平均功率为
变式题组
3. [对瞬时功率和平均功率的理解]把A、B两小球在离地面同一高度处以相同大小的初速度v0分别沿水平方向和竖直方向抛出,不计空气阻力,如图5所示,则下列说法正确的是( )
图5
A.两小球落地时速度相同
B.两小球落地时,重力的瞬时功率相同
C.从开始运动至落地,重力对两小球做的功相同
D.从开始运动至落地,重力对两小球做功的平均功率相同
4. [P=Fv公式的应用]水平面上静止放置一质量为m=0.2 kg的物块,固定在同一水平面上的小型电动机通过水平细线牵引物块,使物块由静止开始做匀加速直线运动,2秒末达到额定功率,其v-t图线如图6所示,物块与水平面间的动摩擦因数为μ=0.1,g=10 m/s2,电动机与物块间的距离足够长.求:
图6
(1)物块做匀加速直线运动时受到的牵引力大小;
(2)电动机的额定功率;
(3)物块在电动机牵引下,最终能达到的最大速度.
求解功率时应注
显示全部