文档详情

中考数学应用题归类解1.doc

发布:2017-06-15约2.33千字共4页下载文档
文本预览下载声明
中考数学应用题归类解析 应用题源于生产、生活实践,是中考数学的常见题型.解题时,要求学生要熟悉其基本的生产、生活情景,善于积极地用数学观点和方法去解决实际问题. 一、方程型 例1“5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可生产帐篷178顶. (1)每条成衣生产线和童装生产线每天生产帐篷各多少顶? (2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感? 二、不等式型 例2、2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A、B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱? 三、一次函数型 例3、某公司在A、B两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机,运这批挖掘机的总费用为y元. (1)请填写下表,并写出y与x之间的函数关系式; (2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省? 四、二次函数型 例4. 研究所对某种新型产品的产销情况进行了研究,为了投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价、(万元)均与x满足一次函数关系。(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x吨时,,请你用含x的代数式表示甲地当年的年销售额,并求年利润(万元)与x之间的函数关系式; (2)成果表明,在乙地生产并销售x吨时,(n为常数),且在乙地当年的最大年利润为35万元。试确定n的值; (3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润? 参考公式:抛物线的顶点坐标是。 五、几何型 例6、如图2,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.求此时轮船所在的B处与灯塔P的距离(结果保留根号). 六、方程与不等式结合型 例7、荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元, 且同一型号汽车每辆租车费用相同. (1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用. 七、不等式与函数结合型 例8、某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖 10件.设每件涨价x元(x为非负整数),每星期的销量为y件. (1)求y与x的函数关系式及自变量x的取值范围; (2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少? 八、不等式与统计结合型 例9、冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克;乙种饮料每瓶需糖6克,柠檬酸10克。现有糖500克,柠檬酸400克. (1)请计算有几种配制方案能满足冷饮店的要求? (2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表。请你根据这些统计数据确定一种比较合理的配制方案,并说明理由. 两种饮料 的日销量 甲 10 12 14 16 21 25 30 38 40 50 乙 40 38 36 34 29 25 25 12 10 0 天数 3 4 4 4 8 1 1
显示全部
相似文档