准谐振反激式开关电源的设计.doc
文本预览下载声明
准谐振反激式开关电源的设计
摘 要: 设计了一种基于UCC28600控制器的准谐振反激式开关电源电路,分析了准谐振反激式开关电源的工作原理及实现方式,给出了电路及参数设计和选择过程,以及实际工作开关波形。实验证明,准谐振反激式开关电源具有输入电压范围宽、转换效率高、低EMI、工作稳定可靠的特点。准谐振技术降低了MOSFET的开关损耗,提高产品可靠性。此外,更软的开关改善了电源的EMI特性,允许设计人员减少滤波器的数目,降低了产品成本。
关键词: 准谐振; 反激; CRM; DCM; FFM; UCC28600
中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2013)21?0148?04
准谐振转换是十分成熟的技术,广泛用于消费产品的电源设计中。新型的绿色电源系列控制器实现低至150 mW的典型超低待机功耗。本文将阐述准谐振反激式转换器是如何提高电源效率以及如何用UCC28600设计准谐振电源。
1 常规的硬开关反激电路
图1所示为常规的硬开关反激式转换器电路。这种不连续模式反激式转换器 (DCM)一个工作周期分为三个工作区间:([t0~][t1])为变压器向负载提供能量阶段,此时输出二极管导通,变压器初级的电流通过Np:Ns的耦合流向输出负载,逐渐减小;MOSFET电压由三部分叠加而成:输入直流电压[VDC、]输出反射电压[VFB、]漏感电压[VLK。]到[t1]时刻,输出二极管电流减小到0,此时变压器的初级电感和和寄生电容构成一个弱阻尼的谐振电路,周期为2π[LC]。在停滞区间([t1~][t2]),寄生电容上的电压会随振荡而变化,但始终具有相当大的数值。当下一个周期[t2]节点,MOSFET 导通时间开始时,寄生电容 ([COSS]和[CW])上电荷会通过MOSFET放电,产生很大的电流尖峰。由于这个电流出现时MOSFET存在一个很大的电压,该电流尖峰因此会做成开关损耗。此外,电流尖峰含有大量的谐波含量,从而产生EMI。
2 准谐振反激式设计的实现
利用检测电路来有效地“感测”MOSFET漏源电压([VDS])的第一个最小值或谷值,并仅在这时启动MOSFET导通时间,由于寄生电容被充电到最低电压,导通的电流尖峰将会最小化。这情况常被称为谷值开关 (Valley Switching) 或准谐振开关。这种电源是由输入电压/负载条件决定的可变频率系统。换言之,调节是通过改变电源的工作频率来进行,不管当时负载或输入电压是多少,MOSFET始终保持在谷底的时候导通。这类型的工作介于连续 (CCM) 和不连续条件模式 (DCM) 之间。因此,以这种模式工作的转换器被称作在临界电流模式 (CRM) 下工作。临界模式下MOSFET漏源电压如图2所示。
在反激式电源设计中采用准谐振开关方案有着许多优点:
(1)降低导通损耗
由于MOSFET导通具有最小的漏源电压,故可以减小导通电流尖峰。减轻了MOSFET的压力,降低器件的温度。
(2)降低输出二极管反向恢复损耗
由于二次侧的整流管零电流关断,反向恢复损耗降低,从而提高电源整体效率。
(3)减少EMI
导通电流尖峰的减小以及在准谐振过程中存在频率抖动, 将会减小EMI 噪声,这就减少EMI滤波器的使用数量,从而降低电源成本。
3 基于UCC28600控制器的钨灯电源的设计
3.1 UCC28600控制器的主要特性
UCC28600控制器的主要特性有先进的绿色模式控制方式;低EMI及低损耗(谷底开关)的准谐振控制方式;空载损耗小于150 mW(低待机电流);低启动电流(最大 25 μA);可编程过压保护(输入电压和输出电压);内置过温保护,温度回复后可自动重启;限流保护:逐周期限功率,过电流打嗝式重启;可编程软启动;集成绿色状态脚(PFC使能端)。
3.2 UCC28600工作原理
UCC28600内部集成了UVLO比较器,高频振荡器,准谐振控制器和软起动控制器,待机模式跳脉冲比较器,输入和输出过电压保护。其内部结构图如图3所示。
(1)UVLO比较器
UCC28600的[VDD]电压在13 V起动,在低于8 V时关闭, 有5 V的滞差电压, 可以提高UCC28600工作的稳定性。
(2)内部振荡器
UCC28600内部集成了一个40~130 kHz的振荡器。
(3)准谐振控制器和软起动控制器
UCC28600采用准谐振的开关变换器以提高转换效率,利用变压器的励磁磁通,在开关关断期间,检测变压器绕组的输出电压,如果电压偏低及处于振荡的波谷时,可以确认该时刻变压器励磁磁通耗尽,可以开启下一周期。该准谐振模
显示全部