新北师大版中考数学动点(学生版).doc
文本预览下载声明
动点问题
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想
中考数学(动点问题)考试分析
2009 2010 2011 动点个数 两个 一个 两个
问题背景 特殊菱形两边上移动 特殊直角梯形三边上移动 抛物线中特殊直角梯形底边上移动
考查难点 探究相似三角形 探究三角形面积函数关系式 探究等腰三角形
考
点 ①菱形性质
②特殊角三角函数
③求直线、抛物线解析式
④相似三角形
⑤不等式 ①求直线解析式
②四边形面积的表示
③动三角形面积函数④矩形性质 ①求抛物线顶点坐标
②探究平行四边形
③探究动三角形面积是定值
④探究等腰三角形存在性
特
点 ①菱形是含60°的特殊菱形;
△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。 ①观察图形构造特征适当割补表示面积
②动点按到拐点时间分段分类
③画出矩形必备条件的图形探究其存在性
①直角梯形是特殊的(一底角是45°)
②点动带动线动
③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)
④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)
共
同
点
①特殊四边形为背景;
②点动带线动得出动三角形;
③探究动三角形问题(相似、等腰三角形、面积函数关系式);
④求直线、抛物线解析式;
⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
典型例题(历年真题)
一、三角形边上动点
1、如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B﹣A﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:
(1)试判断△DOE的形状,并说明理由;
(2)当a为何值时,△DOE与△ABC相似?
2、如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.
(1)求证:△PQE∽△PMF;
(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;
(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.
3、如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.
(1)若BK=KC,求的值;
(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB.BC.CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD(n>2),而其余条件不变时,线段AB,BC,CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.
二、特殊四边形边上动点
1、(2011?株洲,23,)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
2、在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.
(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.
(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.
三、直线上动点
1、
显示全部