矿井提升机变频调速控制系统设计-学士学位论文.doc
文本预览下载声明
基于PLC的矿井提升机变频调速系统设计
摘 要
矿井提升机是采矿等行业的重要设备,矿物的运输和人员的运输等都离不开提升机。我国传统的矿井提升机主要采用继电器—接触器进行控制,并通过在电动机转子回路中串接附加电阻来实现启动和调速。这种控制系统存在可靠性差、故障率高、操作复杂、电能浪费大、效率低等缺点。
针对传统提升机的问题,本设计采用可编程控制器控制系统,并且与变频器结合实现提升机速度控制。通过对提升机系统的深入研究,完成提升机控制系统设计,选择硬件设备型号,并且完成硬件系统设计根据硬件系统要求画出外部接线图,并且编写控制系统程序。通过可编程控制器控制变频器,实现提升机启动、加速、等速、减速、爬行和停车操作,并且对过载、超速、过卷等故障进行监控。
变频调速是利用改变被控对象的电源频率,成功实现了交流电动机大范围的无级平滑调速。应用变频器对矿井提升机的控制系统进行改造,将成为历史的必然趋势。
Systematic Design on frequency control of Shaft Hoist on Basis of PLC Control
ABSTRACT Shaft hoist is an important equipment in mining industries, which is inseparable in the transportation of mineral and personnel. Chinese traditional shaft hoist use relay - contactor to control mainly, and achieve startup and speed governing by the motor rotor circuit in series with additional resistances. This control system has many disadvantages, such as lower reliability, higher failure rate, more complex operation, more power waste, and lower efficiency. As for the problems of traditional shaft hoist, this design achieves hoist speed control by using programmable logic controller system, which combined with frequency converters. Through my intensive study in hoist system, I have completed hoist control system design, the size choice of the hardware device, and finish hardware system design, including the design of detection module, control module, protection module, and anti-jamming module. Finally, I carry on the system integration and debugging. Depending on the hardware system requirements, I draw external wiring diagram and write control system program. Through the programmable logic controller, mine hoist can realize its start, acceleration, constant speed, deceleration, crawling and parking operations, and monitor stoppages such as overload, overspeed, and volume. Programmable logic controller uses PLC, and it is hardware simplicity, strong software flexibility, easy commissioning, little maintenance. It can provide the shaft hoist safe operation with fa
显示全部