文档详情

中医大数据下生物信息学发展与`教育模式浅析.doc

发布:2017-06-05约4.49千字共9页下载文档
文本预览下载声明
中医大数据下生物信息学的发展及教育模式浅析   摘要:分析近二十年来生物信息学及中医相结合研究在我国的发展现状,提出中医与生物信息学相结合的教育教学方向,从“定性”和“定量”学习方法、“基因组学与证本质”、“蛋白质组学与病症关联”以及“以复杂系统方法论解决复杂中医系统”等三方面阐述生物信息学各项技术在中医大数据下的应用模式和教学方法 关键词:中医大数据;生物信息学;高校教学 中图分类号:G642 文献标识码:A 文章编号:1009-3044(2016)27-0123-03 Abstract: Analyzed the developing status of Bioinformatics combined with Chinese Medicine, proposed the education directions for the combinations of Chinese Medicine and Bioinformatics, discussed the using of Bioinformatics techniques in Chinese Medicine big data with teaching and researching area by three common method in Bioinformatics. Key words: chinese medicine big data; bioinformatics; education in university 1 引言 生物信息学是一门新兴学科,在各大高等院校医学或生物学相关专业都有与之相关的课程或专业开设。与我们常见的物理、数学、法学等学科不同,生物信息学更像是一个学科领域,它不仅仅局限于某个科学研究,而是综合运用数学、计算机学和生物学的各种工具及方法来分析和理解在大数据背景下的生物学意义[1]。经过20余年的发展,生物信息学已在分子进化、基因测序、遗传及变异研究等领域取得了突破和成果,是21世纪人类三大计划之一“人类基因组计划(Human Gene Project HGP)”的核心支撑学科。在美国,早于1988年便成立国家生物技术信息中心(NCBI),随后欧洲和日本在1993年和1995年分别建立了欧洲生物信息学研究所(EBI)和信息生物学中心(CIB)用来对数以万计的核酸及蛋白质等数据进行维护并发展至今日趋成熟[2]。生物信息学于上世纪90年代初开始逐渐引起国内科学工作者的重视,经过20多年的发展也已初具规模。笔者通过对近20年公开发表的有关生物信息学关键字的文章进行搜索,运用Excel制图绘制了自1996年至今每年发表文章数量的散点图。从图1可以发现,关于生物信息学学科的研究数量在2014年达到顶峰,并逐渐开始下滑。同时,由于搜索结果包含杂质数据(如被动截取“信息学”为关键词),为了使图表信息量有度可量,笔者继续对在认知上与生物信息学相关的科学领域进行关键词搜索,分别为“数据挖掘”和“人工智能”,并绘制图2。由该图可直观地看出,人工智能的研究一直稳步发展,符合21世纪科技高度发展的大趋势,而数据挖掘技术的相关研究自2005年以来迅猛增长并赶超人工智能。综合分析其主要原因是由于中国人口众多,自2005年以来互联网用户不断增加,全民联网的时代逐渐构成,互联网信息产业的急剧扩大以及电子商务、云技术等网络相关产业的发展带来的信息膨胀,使越来越多的人意识到大数据的作用和研究数据挖掘对经济发展、社会进步的重要影响,进而推动数据挖掘的学科发展 2 中医大数据背景下的生物信息学课程教学 从图2的对比可以看出,生物信息学的研究数量与其他两个学科对比,则显得相形见绌。也就是说,生物信息学在我国的发展仍较为缓慢,使之与其对人类社会的贡献度不成正比。进一步对图1的搜索结果进行高级检索,对已有的生物信息学研究进行划分,将”中医”关键词加入其中,结果发现将中医与生物信息学相结合进行研究的文献少之又少,每年文献不过20左右。生物信息学的作用就是利用计算机等技术对海量的生物数据进行分析并洞察隐藏在其中的规律,而中医数据经历数代中医名师的记录和数十年来信息存储技术的发展已经俨然呈现出高纬度、高阶度的大数据结构。因此,生物信息学在中医数据的研究中一定具有其特殊的价值和意义,是从微观层面描述中医整体结构的重要手段。本文将以中医证侯、病证和中医复杂性为切入点,结合研究生物信息学在其中的应用价值,并讨论在教育教学过程中如何使中医和生物信息学有机结合,做到融会贯通 2.1从“定性”和“定量”学习角度看基因组学学习中医“证”本质 在中医学中,“证”是立方立法的基础,医者通过四诊获取的信息进行综合分析和判断,从病症体征等表现集合
显示全部
相似文档