文档详情

海南出版社七彩期假8年级数学参考解答.doc

发布:2017-03-04约8.33千字共23页下载文档
文本预览下载声明
自主1 23、△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE垂足为F,过点B作BD⊥BC交CF的延长线于D。 解:(1)∵CF⊥AE ∴∠CFE=90° 在Rt△CFE中,∠FCE+∠AEC=90° 在Rt△ACE中,∠CAE+∠AEC=90° ∴∠FCE=∠CAE,即∠DCB=∠EAC ∵DB⊥BC ∴∠DBC=∠ECA=90° ∵AC=BC ∴△ACE≌CBD(ASA) AE=CD (2)∵AE是BC边上的中线 ∴CE=1/2BC=1/2AC=6 ∵△ACE≌CBD ∴BD=CE=6 24、如图:AB∥CD,∠A=90度,AB=2,BC=3,CD=1,E是 AD的 中点,求证:CE⊥BE 证明:延长CE,交BA的延长线于点F ∵AB∥CD ∴∠DCE=∠F 在△CDE和△FAE中 ∵∠DCE=∠F ∠DEC=∠AEF DE=AE ∴ △CDE≌△FAE (AAS) ∴CE=EF CD=FA=1 ∴BF=BA+AF=2+1=3 ∵BC=3 ∴BF=BC 又∵CE=EF ∴BE⊥CE (三线合一) 自主2 22、如图,△ABC是等边三角形,直线AD是它的对称轴,AB=12. (1)写出图中三组相等关系; (2)求∠BAD的度数和BD的长. 解:(1)∵△ABC是等边三角形,直线AD是它的对称轴, ∴AB=AC,BD=CD,∠B=∠C; (2)∵△ABC是等边三角形,AD⊥BC, ∴∠BAD=30°, BD=1/2AB=6. 23、在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。 解:∵在△ABC中,AB=AC ∴∠ABC=∠ACB,∠A+∠ABC+∠ACB=180° ∵在△ABD中,BD=AD ∴∠ABD=∠A,∠BDC=∠A+∠ABD,即∠BDC=2∠A ∵ 在△BDC中,BD=BC ∴∠BDC=∠BCD, 即,如图,可得 ∠A+2∠ACB=180° ∠A+2*2∠A=180° 5∠A=180° ∠A=36° ∠ABC=∠BCA=2∠A=2*36=72° 24、如图,在△ABC中,AB=AC,BD=CE,求证:DF=EF 解:∵AB=AC ∴∠B=∠ACB 在△BDF和△CEF中 ∠DFB=∠CFE ∠B=∠ACB BD=CE ∴△BDF≌△CEF(AAS) ∴DF=EF 25、在△ABC中,BA=BC,∠B=120°,AB的垂直平分线交AC于D。求证:AD=1/2DC 解:连接DB 因为BA=BC ∠B=120 所以∠A=∠C=(180-∠B)/2=(180-120)/2=30 因为DE垂直平分AB 所以AD=BD ∠DBA=∠A=30 所以∠DBC=∠B-∠DBA=120-30=90 “因为∠DBC=90 ∠C=30 所以BD=1/2DC” 又因为BD=AD 所以AD=1/2DC 26、如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点. 证明:连接BD, ∵在等边△ABC,且D是AC的中点, ∴∠DBC=1/2∠ABC=1/2×60°=30°,∠ACB=60°, ∵CE=CD, ∴∠CDE=∠E, ∵∠ACB=∠CDE+∠E, ∴∠E=30°, ∴∠DBC=∠E=30°, ∴BD=ED,△BDE为等腰三角形, 又∵DM⊥BC, ∴M是BE的中点. 自主3 23、因为a,b互为倒数,所以ab=1 因为c、d互为相反数,所以c+d=0 0 24、 自主4 21、已知弹簧的长度y(厘米)在一定的弹性限度内是所挂重物的质量x(千克)的一次函数,现已测得不挂重物时,弹簧的长度是6厘米,挂4千克的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式。 解: 设这个一次函数=kx+b(k≠0) 6=0+b 7.2=4x+b 解得 k= 0.3 b=6 ∴这个一次函数的解析式为y=0.3x+6 22、 已知函数y=kx+3与y=mx的图象相交于P(2,1),如图所示 (1)、求这两个函数的解析式; (2)、求图中阴影部分的面积 【解】:【1】将P(2,1)分别带入y=kx+3与y=mx
显示全部
相似文档