断裂和力学性能.ppt
文本预览下载声明
第七章 高聚物的断裂和力学强度 Chapt.7 The Failure and Strength of Solid Polymers 计划学时:8-10学时 主要参考书: 金日光主编:高分子物理 Brostow: Failure of Plastics G.H.Michler: Kunststoff-Mikromechanik * * 第三部分 Part 3 三、高分子材料的抗冲击强度和增韧改性 高分子材料抗冲击强度是指标准试样受高速冲击作用断裂时,单位断面面积(或单位缺口长度)所消耗的能量。它描述了高分子材料在高速冲击作用下抵抗冲击破坏的能力和材料的抗冲击韧性,有重要工艺意义。但它不是材料基本常数,其量值与实验方法和实验条件有关。 (一)? 抗冲击强度实验 抗冲击强度 的测定方法 高速拉伸试验 落锤式冲击试验 摆锤式冲击试验 悬臂梁式(Izod) 简支梁式(Charpy) 采用简支梁式冲击试验时,将试样放于支架上(有缺口时,缺口背向冲锤),释放事先架起的冲锤,让其自由下落,打断试样,利用冲锤回升的高度,求出冲断试样所消耗的功A,按下式计算抗冲击强度: (7-11) 式中 分别为试样冲击断面的宽和厚,抗冲击强度单位为 。若实验求算的是单位缺口长度所消耗的能量,单位为 。 图7-29 简支梁式冲击试验机(Charpy)示意图 拉伸断裂实验中,材料拉伸应力-应变曲线下的面积(下图)相当于试样拉伸断裂所消耗的能量,也表征材料韧性的大小。很显然,断裂强度 高和断裂伸长率 大的材料韧性也好。 但这个能量与抗冲击强度不同。不同在于,两种实验的应变速率不同,拉伸实验速率慢而冲击速率极快;拉伸曲线求得的能量为断裂时材料单位体积所吸收的能量,而冲击实验只关心断裂区表面吸收的能量。 图7-2 材料拉伸实验的应力-应变曲线 三个阶段中物料吸收能量的能力不同,有些材料如硬质聚氯乙烯,裂纹引发能高而扩展能很低,这种材料无缺口时抗冲强度较高,一旦存在缺口则极容易断裂。裂纹扩展是材料破坏的关键阶段,因此材料增韧改性的关键是提高材料抗裂纹扩展的能力。 冲击破坏过程虽然很快,但根据破坏原理也可分为三个阶段:一是裂纹引发阶段,二是裂纹扩展阶段,三是断裂阶段。 图7-30 冲击实验中材料受力及屈挠关系曲线 曲线下面积:白亮区域——裂纹引发能 阴影区域——裂纹扩展能 脆性断裂和韧性断裂表面 图7-31 左图脆性试样断裂表面的照片;右图韧性试样断裂表面的照片 图7-32 左图脆性试样断裂表面的电镜照片;右图韧性试样断裂表面的电镜照片 (二)影响抗冲击强度的因素 1、 缺口的影响 冲击实验时,有时在试样上预置缺口,有时不加缺口。有缺口试样的抗冲强度远小于无缺口试样,原因在于有缺口试样已存在表观裂纹,冲击破坏吸收的能量主要用于裂纹扩展。 另外缺口本身有应力集中效应,缺口附近的高应力使局部材料变形增大,变形速率加快,材料发生韧-脆转变,加速破坏。缺口曲率半径越小,应力集中效应越显著,因此预置缺口必须按标准严格操作。 2、 温度的影响 温度升高,材料抗冲击强度随之增大。对无定形聚合物,当温度升高到玻璃化温度附近或更高时,抗冲击强度急剧增大。 对结晶性聚合物,其玻璃化温度以上的抗冲击强度也比玻璃化温度以下的高,这是因为在玻璃化温度附近时,链段运动释放,分子运动加剧,使应力集中效应减缓,部分能量会由于材料的力学损耗作用以热的形式逸散。右图给出几种聚丙烯试样的抗冲强度随温度的变化,可以看出,在玻璃化温度附近抗冲强度有较大的增长。 图7-33 几种聚丙烯试样抗冲强度随温度的变化 3、 结晶、取向的影响 对聚乙烯、聚丙烯等高结晶度材料,当结晶度为40-60%时,由于材料拉伸时有屈服发生且断裂伸长率高,韧性很好。结晶度再增高,材料变硬变脆,抗冲击韧性反而下降。这是由于结晶使分子间相互作用增强,链段运动能力减弱,受到外来冲击时,材料形变能力减少,因而抗冲击韧性变差。 从结晶形态看,具有均匀小球晶的材料抗冲击韧性好,而大球晶韧性差。球晶尺寸大,球晶内部以及球晶之间的缺陷增多,材料受冲击力时易在薄弱环节破裂。 对取向材料,当冲击力与取向方向平行,冲击强度因取向而提高,若冲击力与取向方向垂直,冲击强度下降。由于实际材料总是在最薄弱处首先破坏,因此取向对材料的抗冲击性能一般是不利的 4、共混,共聚,填充的影响 实验发现,采用与橡胶类材料嵌段共聚、接枝共聚或物理共混的方法可以大幅度改善脆性塑料的抗冲击性
显示全部