文档详情

几何发展史简述..docx

发布:2017-01-09约字共5页下载文档
文本预览下载声明
数学史与数学文化论文教学单位 电子信息工程学院姓 名 马劭劼 学 号 班 级 _ 自动化1003指导教师 彭明书 时 间 2012年12月 联系方式析几何的发展简述引言我们今天所学到的数学,都是前人根据理论根据实践总结出来的有一定体系的科学,我们从小接触的数学仅仅是大海里的一滴水。其中几何的概念也是我们慢慢从实际的问题中总结出来的一种知识与科学。 作为几何,可以说发展的时间并不算长,但是它应用的范围比较广,这是我们慢慢找寻理论意义,从中发现财富的一个最切实的例子。二、主要内容说起解析几何的发展,我必须从几个方面起分别进行阐述,首先是局部到整体的理念变化。以及重要的拓扑概念的建立。其次是从平面到立体,也就是维度的变化。之后是交换与线性,两个方面进行讨论,这也是现代数学与古代数学相比改变最大的两个特点。下面我就分别的开始进行分析。1、从局部到整体作为开始,我准备列一些主题并且围绕它们来讨论。我谈论的第一个主题概括地讲,就是被大家称为从局部到整体的转变。在古典时期,人们大体上已经研究了在小范围内,使用局部坐标等等来研究事物。在这个世纪,重点已经转移到试图了解事物整体和大范围的性质。由于整体性质更加难以研究,所以大多只能有定性的结果,这时拓扑的思想就变得非常重要了。正是Poincare,他不仅为拓扑学发展作出先驱性的贡献,而且也预言拓扑学将成为二十世纪数学的一个重要的组成部分,顺便让我提一下,给出一系列著名问题的Hilbert并没有意识到这一点。拓扑学很难在他的那些问题中找到具体体现.但是对Poincare而言,他相当清楚地看出拓扑学将成为一个重要的内容。 让我试着列一些领域,然后大家就能知道我在想什么了。例如,考虑一下复分析(也被称为“函数论”),这在十九世纪是数学的中心,也是象Weierstrass这样伟大人物工作的中心。对于他们而言,一个函数就是一个复变量的函数;对于Weierstrass而言,一个函数就是一个幂级数。它们是一些可以用于写下来,并且可以明确描绘的东西或者是一些公式。函数是一些公式:它们是明确可以用显式写下来的。然而接下来Abel、Riemann和其后许多人的工作使我们远离了这些,以至于函数变得可以不用明确的公式来定义,而更多地是通过它们的整体性质来定义:通过它们的奇异点的分布,通过它们的定义域位置,通过它们取值范围。这些整体性质正是一个特定函数与众不同的特性。局部展开只是看待它们的一种方式。 一个类似的事情发生在微分方程中,最初,解一个微分方程,人们需要寻找一个明确的局部解!是一些可以写下来的东西.随着事物的发展,解不必是一个显函数,人们不一定必须用好的公式来描述它们。解的奇异性是真正决定其整体性质的东西。与发生在复分析中的一切相比,这种精神是多么的类似,只不过在细节上有些不同罢了。 在微分几何中,Gauss和其他人的经典工作描述了小片的空间,小块的曲率以及用来描述局部几何的局部方程。只要人们想要了解曲面的整体图象以及伴随它们的拓扑时,从这些经典结果到大范围的转变就是很自然的了。当人们从小范围到大范围时,最有意义的性质就是拓扑的性质。 数论也有一个类似的发展,尽管它并不是很明显地适用于这一框架。数论学家们是这样来区分他们称之为“局部理论”和“整体理论”的:前者是当他们讨论一个单个的素数,一次一个素数,以及有限个素数时;后者是当他们同时讨论全部素数时。这种素数和点之间,局部和整体之间的类似性在数论发展过程中起了很重要的作用,并且那些在拓扑学发展中产生的思想深深地影响了数论。 当然这种情况也发生在物理学中,经典物理涉及局部理论,这时我们写下可以完全描述小范围性质的微分方程,接下来我们就必须研究一个物理系统的大范围性质。物理学涉及的全部内容就是当我们从小范围出发时,我们可以知道在大范围内正在发生什么,可以预计将要发生什么,并且沿着这些结论前进。2、维数的增加 我的第二个主题有些不同,我称之为维数的增加。我们再次从经典的复变函数理论开始:经典复变函数论主要是详细讨论一个复变量理论并加以精炼。推广到两个或者更多个变量基本上发生在本世纪,并且是发生在有新现象出现的领域内。不是所有的现象都与一个变量的情形相同,这里有完全新的特性出现,并且n个变量的理论的研究越来越占有统治地位,这也是本世纪主要成就之一。 另一方面,过去的微分几何学家主要研究曲线和曲面,我们现在研究n维流形的几何,大家仔细想一想,就能意识到这是一个重要的转变。在早期,曲线和曲面是那些人们能真正在空间里看到的东西。而高维则有一点点虚构的成分,在其中人们可以通过数学思维来想象,但当时人们也许没有认真对待它们。认真对待它们并且用同样重视程度来研究它们的这种思想实际上是二十世纪的产物。同样地,也没有明显的证据表
显示全部
相似文档