[计算方法资料.ppt
文本预览下载声明
各节点为 ⑴ 复化梯形公式 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. ⑵ 复化Simpson求积公式 ⑶ 复化Cotes求积公式 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 例1. 解: 为简单起见,依次使用8阶复合梯形公式、4阶 复合Simpson公式和2阶复合Cotes公式 可得各节点的值如下表 0 1 0.125 00.25 00.375 00.5 00.625 00.75 00.875 0 1 0Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 复化梯形,取n=8, h=1/8. 复化Simpson,n=4,h=1/4 复化Cotes公式,n=2, h=1/2 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 原积分的精确值为 精度最高 精度次高 精度最低 比较三个 公式的结果 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 复合求积公式的余项和收敛的阶 我们知道,三个求积公式的余项分别为 单纯的求积公式 复合求积公式的每个小区间 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 则复合梯形公式的余项为 由于 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. ⒉若 ,复化Simpson公式的余项 ⒊若 ,复化Cotes公式的余项 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 由此可知复化求积法是提高精度的有效方法,但由于f(x)未知,在已给精度的情况下,事先如何确定h? 五、变步长复化求积法 基本思想:先选择一个较大的步长,对计算结果进行精度估计,若不满足精度则步长缩小一半,直到满足精度要求。 待考虑问题: 1、如何判断结果的精度? 2、在h变小情况下怎么节省计算量? Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 1、如何判断结果的精度? ≈4 说明:用T2n作为I的近似值时,误差大致为 所以:可用 作为精度判断。 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 2、在h变小情况下怎么节省计算量? [a,b]n等分,hn, [a,b]2n等分,h2n,
显示全部