文档详情

一种开关电源模块并联供电系统设计.doc

发布:2017-09-01约2.35千字共5页下载文档
文本预览下载声明
一种开关电源模块并联供电系统设计【摘要】该设计采用Buck降压变换器为核心,应用单片机技术,实现了一款开关电源模块并联供电系统。系统中共有两个DC/DC开关电源模块,24V直流输入,8V稳定输出。使用SG3525PWM控制器调整反馈电压,使其形成稳定的闭环系统。测控部分采用STM32系列单片机STM32F103完成,使用该单片机的3个A/D数据采集通道,实现对2个电源模块输出电压和电流信号的信号采样。再使用单片机自带的PWM模块,输出占空比可调的方波信号,经过LM331进行频率电压转化,形成电压信号,再结合采样到的电流信号,调整PWM控制器的输出,反馈回模块电压输入端。 【关键词】STM32;DC/DC;PWM控制器;闭环控制 一、系统方案设计 本系统主要由2块DC/DC开关电源模块和单片机测控模块两部分构成。其中,DC/DC模块输入为24V直流电压,输出为8V直流电压信号。采用了Buck降压电路结构。测控模块采集电压和电流量,经过计算之后,使用STM32F103产生调整信号。保证电压和电流按照一定比例输出。每一个模块都是双环控制系统,分别为电压控制和电流控制,电压环为内环,电流环为外环,两个环路的信号共同通过SG3525进行脉宽调制,将输出的信号反馈回输入端,形成闭环控制系统。如图1所示: 均流电路:实际应用中,往往由于一台直流电源的输出参数不能满足要求,需要采用模块式电源,按照并联、串联方式,实现输出电压、输出电流、输出功率的扩展。在设计中使用了电源并联技术,但是简单的并联不能保证整个扩展后的系统稳定可靠的工作,电源模块存在“均流”问题。解决的方法对整个系统的稳定性、可靠性都有很大影响。本设计使用强迫均流法,该方法通过监控模块实现均流,实现方式主要有软件控制和硬件控制两种。其中软件方式比较容易实现,均流精度高。软件方式是通过软件计算,比较模块电流与系统平均电流,然后调整模块电压,使其电流与平均电流关系固定。 Buck变换器电路:采用SG3525作为Buck型拓扑的PWM控制芯片。SG3525是高性能固定频率电流模式控制器,专为离线和直流变换器应用而设计,只需最少外部元件就能获得成本效益高的方案,能进行精确的占空比控制。 二、电路分析与实现 1.DC/DC变压器稳压原理分析 系统共有两个DC/DC电源模块,输入是24V直流电压,调整负载电阻时要保证负载上的输出电压不变,即保证在8V。电路里使用了电压反馈和电流反馈,使整个系统形成稳定的闭环,如图2所示。 调整负载电阻的时候,根据欧姆定律,电路电流发生了变化(取自B点),为保证输出的电压稳定在8V,就需要采用单片机测控电路配合调节。单片机产生的PWM信号经LM331进行频率—电压转换后,电压信号与B路输入形成互补。为保证反馈的电压不变,只需调整SG3525PWM控制器输出固定脉冲占空比,使B端电压和PWM输出的电压保持平衡状态。 2.电流电压检测 如图3中所示,从DC/DC模块中电源的输出端取8V输出分压后的A(电压)、B(电流)信号,分别接到单片机STM32F103的两路AD通道上进行测量。另外一个电源模块也用同样的方法,测量其电流的输出。 3.均流方法分析 本系统采用强迫均流法,强迫均流法是通过监控模块实现均流,实现方法主要有软件控制和硬件控制两种。这里采用软件控制。 软件控制是通过软件计算,比较模块电流和系统平均电流,然后再调整模块的电压,使其电流与平均电流相等,这种方法易于实现,均流精度高。 实现的公式:设总电流I0;分电流:I1, I2; I0=I1+I2;I1= I0; I2=I1—I0; 使用测控模块输出的电压调整其中一个电源模块的电流为I0,那么另一个模块的电流自动变为I0,实现均流。 4.过流保护分析 本设计中电路保护功能的实现由两部分构成。其中一部分使用软件保护,一部分使用硬件保护。 软件保护部分使用测控模块检测电压信号,当发生短路故障,电压变为0,使用PWM转换后输出较小电压,然后循环检测,直到检测到电压不为0,说明短路故障已经修复,重新调整电源模块电流恢复原来的状态。如此可以实现短路故障的自动恢复功能。硬件保护部分使用了可控硅。如图4所示,当检测到E端有较高电压信号时,既满足控制级有足够的正向电压和电流的条件,同时也满足阳极电位高于阴极电位的条件,此状态使得Q5截止,Q6导通,在F端有电压输出。把F端电压加载到SG3525的软启动引脚。使得PWM输出关闭,调整反馈回路的电压。 图4 硬件保护模块 5.测控电路 该部分电路使用了STM32自带的3个通道的AD转换器,分别采集2个开关电源输出的电压和电流信号,该信号在CPU中处理后,得到调整结果,经过内部的PWM模块产生占
显示全部
相似文档