步魔方.doc
文本预览下载声明
魔方解法
魔方别看只有26个小方块,变化可真是不少,魔方总的变化数为
三阶魔方总变化数的道理是这样:六个中心块定好朝向后,我们就不可以翻转魔方了,而他们也正好构成了一个坐标系,在这个坐标系里,8个角色块全排列8!,而每个角色块又有3种朝向,所以是8!*38,12个棱色块全排列每个有2种朝向是12!*212,这样相乘就是分子,而分母上3*2*2的意义是,保持其他色块不动,不可以单独改变一个角色块朝向(对应3),单独改变一个棱色块朝向(对应2),和单独交换一对棱色块或一对角色块的位置(对应另一个2)。
第一个道理:为什么不能单独翻转一个棱色块。
想象我们对6个中心色块定好了我们喜爱的方向,我们就定好了一个坐标系,这个坐标系的原点就是魔方的体中心。坐标有明确的正负方向。我们可以看见魔方的每一个棱色块都是有一条棱的(这不废话么,呵呵),对应于 水平、前后、竖直x,y,z三个轴,分别有4条棱和他们每一个平行,我们把这4条棱都标上一个箭头,指向正的方向。现在如果你有一个魔方可以这样做一下。我们现在想象空间中有了这样一个坐标系,和12个箭头。考虑任意面的旋转,(我这里不考虑3个中面的旋转,(因为,1,这样动了坐标系,2,中面的旋转可以等效两个侧面的旋转。),这时我们不考虑魔方,和魔方的花色,把他看成透明的,我们只考虑箭头,每次任意面旋转90度,我们都会让2个箭头改变方向(由正变负),我们只看结果,不考虑转的过程,不区分箭头哪来的。 翻转一个面90度是魔方的原子操作,他只能同时改变2个箭头的方向。所以我们最后不可能得到其他块不变只有1个箭头被翻转,也就是不可能只有一个棱色块被翻转。
第二个道理:为什么不能单独翻转一个角色块。
这个问题说起来,首先需要澄清角色块的方向是如何定义的。因为角色块会处在8个不同的位置,他的方向却只有3种,我怎么定义一个移动的坐标,又能准确标示出这3种方向变化呢? 我这里建议一种: 首先让你的视线穿过一个角色块的顶点和整个魔方的体中心,你会看到一个Y是不是?以你的视线为轴,这个角色块可以旋转,他有3个位置。如下:
0°
120°
240°
试试转一个侧面,看看色块在新的位置朝向是怎样的?如果你转一个魔方的右侧面90度,你会发现最靠近你眼睛的那个角色块的朝向转过了120度。盯住这个色块,再转一下,他转到下面来了,为了仍然呈现一个Y,我们这时可以将 魔方底面翻上来,这时我们发现这个角色块又转回了0如此等等。重点是,你观察任何一面的90度旋转,4个角色块,他们的朝向 旋转过的角度总和 一定是360度的整数倍 ,准确的说就是120+240+240+120。 因为,转一个面是最小的原子操作,所以无论经过怎样多少步的操作,我们所有角色块角度变化和都是360*n,所以我们不可能只将一个色块旋转120度或者240,而让其他色块不变化,也因此我们证明了为什么不能单独翻转一个角色块。
第三个道理:为什么不能只对调一对色块。
首先我们考虑1234四个数的排列问题。1234变成4123,是所有数向右推移一位的变换。大家联想一下魔方,每转一个面90度,4个角,4个棱都是这种变换是吧。
1234变4123 我以后简称(1234),其实也好记,就是1 to 2,2 to 3, 3 to 4,4 to 1, 要是(1432)就是1到4,4到3,3到2,2到1,就是向左推移。
(1234)是由几个“交换两个数”的变换组成的呢。这里直接给出答案(1234)=(12)(13)(14),(12)的意思就是1到2,2到1。
具体说,我们看 1234变化的过程是这样:?
? (12) 2134
? (13) 3124
? (14) 4123
正好就是变换(1234)。 这样我们知道(1234)是经过奇数个交换得到的。
任何一个变换都可以由若干个两两交换得到。因为对于一个目标排列如2413,我怎么做呢, 这里面内在的道理就涉及群论的初步。这可能叫做循环群,我不确定,因为我没看过书。 1234全排列有4!=24个,而对1234的变换也有24种。他们构成一个群。
什么是群?
一个群就是有一堆元素。我们还需要一个运算 “*”。 他们满足:
1. 封闭性:a和b是群里的元素,那么a*b也是。
2. 存在元素e(其实就是类比乘法里的1)。a*e=e*a=a
3. 每个元素a 都有唯一逆元a-1, a*a-1=a-1*a=e?
4. 结合律 (a*b)*c=a*(b*c)
好像很boring,我每次看都觉得,但是今天自己写一遍就不觉得。这里面,我是说这件bo不boring的事里面是有道理的。 需要指出的是通常群并不满足交换律。满足交换律的叫做abel群(等于什么都没说)。 为啥我说对1234的24个变换构成一个群呢。 我说的24个变换就是
显示全部