文档详情

基于遗传算法的RBF神经网络用于配电网线损计算-电力系统及其自动化专业论文.docx

发布:2019-03-26约6.11万字共71页下载文档
文本预览下载声明
中文摘要 配电网线损作为电力系统的一项重要的技术经济指标,长期以来受到电力企 业及相关部门的广泛重视。特别是电力的市场化改革以来,线损率己经直接与电 价挂钩,影响着企业的经营效益。因此,准确而简便的线损计算,对于考核企业 线损管理工作成效、制定各项有效地降损措施是极其重要的。 本文首先对现有的理论线损计算方法进行了深入分析,指出了目前各种线损 计算方法的局限性。并针对我国配电网具有元器件数量众多、分布复杂,自动化 程度普遍较低,原始数据不易收集等特点,提出了一种基于遗传算法的 RBF神经 网络用于配电网线损计算的新方法。该方法通过阻 F神经网络的空间拟合性和径 向基函数的局部响应特性映射配电线路参数与配电网线损之间的非线性复杂关 系,并针对传统的 RBF 网络学习方法中,隐含层与输出层结构参数的确定相互独 立,输出层权重训练容易陷入局部最小等缺点,应用遗传算法对整个阻 F网络进 行优化,将 RBF 网络不同的中心和其对应的宽度及各个调节权重统一编码,加强 了RBF 网络隐含层和输出层的合作关系,并利用遗传算法全局搜索的功能特性, 使得整个网络模型达到全局最优。此外,对遗传算法本身的遗传机制作出了相应 的改进,使遗传操作更加完善。 为了验证本文提出的方法的实用性和可行性,分别以某地区 68条配电线路 和天津滨海供电局 67条配电线路的线路特征参数为样本,进行了线损的实例仿真 计算。试验仿真结果表明以遗传算法优化的阻 F网络,具有网络模型简单、训练 速度快、计算精确度高等优点,并具有很强的实用性和推广性。利用神经网络的 拟合能力合扩展能力,可以较为准确的记忆可获取的配电线路特征参数与线路线 损之间的非线性映射关系,从而进行较为精确的线损计算。 最后,本文以Borland C++ Builder 5.0作为软件开发平台,基于面向对象程序 设计的思想,开发出一套适应于配电网线损计算的可视化软件。软件具有配电线 路图绘制,元件运行数据录入,数据库管理,线损计算,报表输出等功能。人机 界面友好,并提供了大量的快捷操作,具有国际标准软件界面风格,易于用户学 习掌握。软件设计后期,进行了多次测试和使用,确保了软件的完整性、安全性 和可靠性。 关键词z 配电网,线损,遗传算法, RBF 神经网络,可视化软件 ABSTRACT The line losses of power distribution network, which had caught much attention of power enterprises and many related organizatíons ,plays a ve可 important role in evaluating the economics of a pow町 system. Since the reform of the power industry, line losses has direct1y affected the power price,which is vital to the benefit of enterprises.Accurate and convenient methods of calculating the line losses is very important not only to the evaluation of line losses management ,but also to the formulations of losses decreasing measurement. Firstly existing methods for calculation of the theoretical line losses is investigated in detail in this papeζand the limitation of them is also pointed out. According to the characteristics of power distribution system in 0田 coun町, this paper presents a RBFNN based on Genetic Algorithm ,which is applied in calculating the line losses of power distributíon systems. The radíal basis fuction (RBF) ne町al network ,due to its nonlinear proce
显示全部
相似文档