文档详情

栈满isFull()-东南大学计算机科学与工程学院.ppt

发布:2019-07-27约1.18万字共56页下载文档
文本预览下载声明
栈与递归 问题解法是递归的 例如,汉诺塔 (Tower of Hanoi) 问题的解法 * void Hanoi ( int n, char A, char B, char C ) { if (n == 1) printf( move %s, A, to %s , C ); else { Hanoi ( n-1, A, C, B ); printf ( move %s, A, to %s , C ); Hanoi ( n-1, B, A, C ); } } 3个圆盘的汉诺塔的移动 栈与递归 问题解法是递归的 例如,汉诺塔 (Tower of Hanoi) 问题的解法 * 4个圆盘的汉诺塔的移动 栈与递归 用栈将递归转换为非递归 汉诺塔 (Tower of Hanoi) 问题的解法 * void Hanoi ( int n, char a, char b, char c) { Stack S; initStack(S); Node q; q.n = n; q.A = a; q.B = b; q.C = c; Push (S, q); while ( ! StackEmpty(S) ) { Pop(S, q); n = q. n; a = q.A; b = q.B; c = q.C; if ( n == 1 ) printf (“Move %c”, a, “ to %c”, c); else { q.n = n-1; q.A = b; q.B = a; q.C = c; Push (S, q); q.n = 1; q.A = a; q.B = b; q.C = c; Push (S, q); q.n = n-1; q.A = a; q.B = c; q.C = b; Push (S, q); }}} Struct Node { int n; char A,B,C; }; (3,A,B,C) A-C (2,A,C,B) (1,A,B,C) (2,B,A,C) (1,A,B,C) (1,A,C,B) (1,C,A,B) (1,B,C,A) (1,B,A,C) (1,A,B,C) A-C A-B C-B B-A B-C A-C 栈与递归 用栈将递归转换为非递归 汉诺塔 (Tower of Hanoi) 问题的解法 * (3,A,B,C) A-C (2,A,C,B) (1,A,B,C) (2,B,A,C) (1,A,B,C) (1,A,C,B) (1,C,A,B) (1,B,C,A) (1,B,A,C) (1,A,B,C) A-C A-B C-B B-A B-C A-C top (3,A,B,C) 空栈 top 栈与递归 用栈将递归转换为非递归 汉诺塔 (Tower of Hanoi) 问题的解法 * (3,A,B,C) A-C (2,A,C,B) (1,A,B,C) (2,B,A,C) (1,A,B,C) (1,A,C,B) (1,C,A,B) (1,B,C,A) (1,B,A,C) (1,A,B,C) A-C A-B C-B B-A B-C A-C top (1,A,B,C) (2,B,A,C) (2,A,C,B) top top 栈与递归 用栈将递归转换为非递归 汉诺塔 (Tower of Hanoi) 问题的解法 * (3,A,B,C) A-C (2,A,C,B) (1,A,B,C) (2,B,A,C) (1,A,B,C) (1,A,C,B) (1,C,A,B) (1,B,C,A) (1,B,A,C) (1,A,B,C) A-C A-B C-B B-A B-C A-C top (1,A,B,C) (2,B,A,C) (1,C,A,B) top top (1,A,C,B) (1,A,B,C) top top 空栈 top 栈与递归 用栈将递归转换为非递归 汉诺塔 (Tower of Hanoi) 问题的解法 * (3,A,B,C) A-C (2,A,C,B) (1,A,B,C) (2,B,A,C) (1,A,B,C) (1,A,C,B) (1,C,A,B) (1,B,C,A) (1,B,A,C) (1,A,B,C) A-C A-B C-B B-A B-C A-C (1,A,B,C) (1,B,A,C)
显示全部
相似文档