聚合物的热分析差示扫描量热法[DSC].doc
文本预览下载声明
化学化工学院材料化学专业实验报告实验
实验名称:聚合物的热分析------差示扫描量热法(DSC)
年级:201级材料化学 日期:2013-
姓名: 学号: 同组人:
DSC的工作原理
DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。
在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平均温度计算器加以平均后,再输入平均温度放大器。经比较后,如果程序温度比两个测量池的平均温度高,则由放大器分别输入更多的电功率给装在两个测量池上的独立电热器以提高它们的温度。反之,则减少供给的电功率,把它们的温度降到与程序温度相匹配的温度。这就是温度程序控制过程。
DSC与DTA所不同的是在测量池底部装有功率补偿器和功率放大器。因此在示差温度回路里,显示出DSC和DTA截然不同的特征,两个测量池上的铂电阻温度计除了供给上述的平均温度信号外,还交替地提供试样池和参比池的温度差值△T。输入温度差值放大器。当试样产生放热反应时,试样池的温度高于参比池,产生温差电势,经差热放大器放大后送入功率补偿放大器。
在补偿功率作用下,补偿热量随试样热量变化,即表征试样产生的热效应。因此实验中补偿功率随时间(温度)的变化也就反映了试样放热速度(或吸热速度)随时间(温度)的变化,这就是DSC曲线。它与DTA曲线基本相似,但其纵坐标表示试样产生热效应的速度(热流率),单位为毫卡(毫焦)/秒,横坐标是时间或温度,即 dH/dt —t (时间或温度T)曲线(见图6-2)。
图6-2 dH/dt —t (时间或温度T)曲线
同样规定吸热峰向下,放热峰向上,对曲线峰经积分,可得试样产生的热量△H。
DSC在高聚物研究中的应用
DSC 方法以其优越的热量定量性能,在高聚物研究中发展极为迅速,而且已经成为高聚物常规测试和基本研究手段,应用面较广,但限于篇幅,在此只将主要方面加以简介。
1、高聚物玻璃化转变温度Tg的测定
Tg是表征高聚物性能的重要参数,通过测定高聚物的Tg可以获得多方面的性能与结构关系的信息。测定不同高聚物的Tg可以判断分子柔顺性的差别,凡与分子运动有关的性能都可通过Tg的测定来证实。对于同种交联高聚物,通过测定其Tg的大小,可以推断交联程度的差异。也可通过Tg的测定来研究高聚物共混结构。显微镜法可直接观察到共混物的形态结构,但不能准确地测得两种聚合物达到分子级混合的程度。但通过Tg的测定可以判断分子级混合的程度。若两组分完全达到分子级的混合,形成均相体系,只有一个Tg;如果两分组完全没有分子级的混合,界面明显,存在两个与原组分相同的Tg;如果两组分之间具有一定程度的分子级混合时,界面层占有不可忽略的地位,这时仍有两个Tg,但彼此靠近。分子级混合的程度越大,相互靠近的程度亦越大。同时,两相之间的界面层也可能表现出不太明显的第三个玻璃化转变区。需要指出的是橡胶的Tg一般在0以下,要带有低温装置的才能测定,而SR-1型DSC仪只能测定室温以下的Tg,一般测定非晶型塑料的Tg。如PVC,PS以及未拉伸的非晶PET等。
2、DSC法测定橡胶的硫化,热固树脂的固化过程
DSC法可以测定出橡胶混炼胶的硫化峰温以及硫化热效应,通过硫化峰温的高低以及峰宽(半高宽或峰宽)来分析硫化体系的硫化温度,硫化反应速度等,对于筛选配方的硫化体系,研究促进剂的并用有着重要意义。例如促进剂CZ的硫化放热峰,峰温高、峰形窄(见图9-11)。说明其发生硫化反应的温度高,反应速度快,即所谓后效应性;而促进剂DM的硫化峰温低,峰形宽,则说明临界温度低,反应速度慢。另外还可求出硫化活化能E,对硫化体系进行理论分析。根据DSC曲线峰还可以得到硫化热效应,它是评价交联程度的依据,并可与交联密度,定伸应力等实验结合起来评价橡胶的交联情况。对于热固性树脂的固化反应也可用同样的方法进行研究。从固化反应的DSC曲线中可以得到固化反应的起
显示全部