文档详情

VAR模型总结与Eviews实现.doc

发布:2017-12-16约8.88千字共17页下载文档
文本预览下载声明
一 案例说明 对中国1990-2007年的进出口贸易总额进行分析,数据如下: Year Export Import Year Export Import 1990 2985.8 2574.3 1999 16159.8 13736.4 1991 3827.1 3398.7 2000 20634.4 18638.8 1992 4676.3 4443.3 2001 22024.4 20159.2 1993 5284.8 5986.2 2002 26947.9 24430.3 1994 10421.8 9960.1 2003 36287.9 34195.6 1995 12451.8 11048.1 2004 49103.3 46435.8 1996 12576.4 11557.4 2005 62648.1 54273.7 1997 15160.7 11806.5 2006 77594.6 63376.9 1998 15223.6 11626.1 2007 93455.6 73284.6 二 VaR建模 2.1 探索性分析 如图所示,中国进出口数据具有较强的相关性,因此适用于建立VaR模型。 2.2 建立VaR模型 如上图所示建立VaR模型,结果如下表所示: ?Date: 04/21/10 Time: 11:00 ?Sample (adjusted): 1992 2007 ?Included observations: 16 after adjustments ?Standard errors in ( ) t-statistics in [ ] EXPORT IMPORT EXPORT(-1) ?0.193423 -0.898005 ?(0.53677) ?(0.63778) [ 0.36035] [-1.40801] EXPORT(-2) ?0.348525 ?0.842249 ?(0.53421) ?(0.63473) [ 0.65242] [ 1.32694] IMPORT(-1) ?1.158782 ?2.196035 ?(0.42066) ?(0.49982) [ 2.75467] [ 4.39365] IMPORT(-2) -0.298354 -0.894162 ?(0.63098) ?(0.74971) [-0.47284] [-1.19267] C -1269.422 -250.5640 ?(959.091) ?(1139.57) [-1.32357] [-0.21988] ?R-squared ?0.995561 ?0.990496 ?Adj. R-squared ?0.993947 ?0.987040 ?Sum sq. resids ?S.E. equation ?2087.547 ?2480.377 ?F-statistic ?616.8156 ?286.6099 ?Log likelihood -142.0054 -144.7641 ?Akaike AIC ?18.37567 ?18.72052 ?Schwarz SC ?18.61711 ?18.96195 ?Mean dependent ?30040.71 ?25934.93 ?S.D. dependent ?26832.70 ?21788.19 ?Determinant resid covariance (dof adj.) ?7.99E+12 ?Determinant resid covariance ?3.77E+12 ?Log likelihood -277.0800 ?Akaike information criterion ?35.88500 ?Schwarz criterion ?36.36787 从表中可以看出,VaR模型可以解释99%的方差,因此该模型比较合理。 2.3 滞后阶数选择 选择Views-Lag Structure-Lag Length Criteria,弹出对话框,如下选择: 得结果如下: VAR Lag Order Selection Criteria Endogenous variables: EXPORT IMPORT? Exogenous variables: C? Date: 04/21/10 Time: 11:02 Sample: 1990 2007 Included observat
显示全部
相似文档