LTE-TDD波束赋形.doc
文本预览下载声明
波束赋形
波束赋形原理 波束赋形的目标是根据系统性能指标,形成对基带(中频)信号的最佳组合或者分配。具体地说,其主要任务是补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰。因此,首先需要建立系统模型,描述系统中各处的信号,而后才可能根据系统性能要求,将信号的组合或分配表述为一个数学问题,寻求其最优解。
1. 系统模型
根据应用场合的不同,一般可以将波束赋形算法分为上行链路应用以及下行链路应用。无论是哪种情况,总可以用一个时变矢量(MIMO)信道来描述用户端与基站端的信号关系,如图2所示。对于上行链路,多个发射信号实质上是K个用户设备同时发送的信号,基站则使用多个天线单元接收信号,对其进行处理和检测,这时发送端的信号分配仅在各个支路分别进行;对于下行链路,基站仍可能使用多个天线单元向特定用户发射信号,但用户设备使用单天线检测与其有关的信号,这时接收部分降为一维,信号组合也仅对于单路信号进行。
根据图2的系统模型,就可以描述发送端的原始信号与接收端实际接收信号之间的关系,通常根据研究重点的不同,对于原始信号以及实际接收信号的位置会有不同的定义。对于波束赋形技术,一般其研究的范围从发送端扩谱与调制单元的输出端,到接收端解扩与解调单元的输入端,而研究过程中又常将信号分配单元输出端到信号组合单元输入端之间的部分合并,统称为无线移动信道,由于无线移动通信环境的极度复杂,无法得到其输入输出关系的确切描述,一般采用大量测量和理论研究相结合的方法,使用有限的参数描述该信道。采用这种方法后,就可以得到受干扰有噪信号与原始信号的关系,并据此在一定程度上恢复信号。因此,波束赋形的一般过程为:
⑴根据系统性能指标(如误码率、误帧率)的要求确定优化准则(代价函数),一般这是权重矢量与一些参数的函数;
⑵采用一定的方法获得需要的参数;
⑶选用一定的算法求解该优化准则下的最佳解,得到权重矢量的值。
可以发现,由于通信环境复杂,上述过程的每一阶段都可有不同的实现方案,因此产生了大量的波束赋形算法,如何衡量和比较其性能也成为波束赋形技术研究的一个重要方面。
2. 波束赋形算法的性能
由于波束赋形技术建立在通信环境模型以及系统模型的基础上,因此在考察波束赋形算法的性能时,要考虑到环境因素的影响以及其对于系统的要求,以便于得到更符合实际需要的性能估计。综合各种因素,一般可以从以下几个方面考察波束赋形算法的性能。
⑴算法运算性能:这主要包括算法的收敛速度、复杂程度、精度、稳定性以及对误差的正确判断性等。前四项指标是常见的衡量算法性能的指标,而最后一项在智能天线应用领域有特别的意义。在实际的通信系统中,由于天线规模等实际条件的限制以及移动无线信道复杂情况的影响,对波达方向的测量估计误差较大,因此对于采用基于波达方向估计的波束赋形算法,能否降低其对误差的敏感度就显得十分重要,尤其是在下行链路中,一旦发生较大的指向偏差,不仅会使得目标用户无法获得一定质量的信号,还可能会带来对其他用户的干扰,从而导致系统性能急剧下降。
⑵算法的测量要求:主要包括算法需要了解的信道特征参量的种类和数量以及是否需要提供参考信号等。信道特征参量的种类可以包括多普勒频移、入射信号的角度分布以及相应的时延分布等;而数量则是指需要了解的信道的数量,如在了解天线与目标用户间信道的同时是否需要了解天线与其他非目标用户(干扰源)之间的信道参量等。通过预定义的参考信号进行信道估计是一种常用的方法,不同的算法对是否需要参考信号以及对参考信号长度等参数会有不同的要求。⑶算法对系统的其他要求:主要包括达到一定性能需要的天线单元数目、是否有对传输协议的额外要求(如是否需要反馈链路)、是否对输入信号有一定的要求(如是否为恒包络的调制信号)等。
3. 波束赋形技术的现状及发展方向
波束赋形技术发展过程中,出现了大量的具体技术,其命名、分类并不完全统一,加之近年来与其他技术(如联合检测、功率控制等)的结合乃至融合,使得相关的具体技术更显纷繁复杂。通常可以依据的分类有,根据应用场合的不同将波束赋形技术分为上行链路波束赋形和下行链路波束赋形;根据其所使用的信道特征参量的种类,可分为使用信道空域参量的技术和使用信道空时域参量的技术;根据不同的波束赋形技术对于问题采用的描述方法,可分为优化类和自适应滤波器类;根据波束赋形技术计算使用的方法可分为线性算法和非线性算法。
对于上行链路,由于可以获得可靠的信道实时估计,因此可以采用信道的空时域参量进行波束赋形,以提高上行链路性能。针对移动无线通信系统,尤其是CDMA系统的实际情况,上行链路的波束赋形可以结合信号检测,实现多用户的联合检测。但是应用这一方法存
显示全部