应用卷积神经网络的车道线检测系统.docx
应用卷积神经网络的车道线检测系统
目录
1.内容概括................................................2
1.1背景与意义...........................................2
1.2研究内容与方法.......................................3
1.3文档结构.............................................4
2.相关工作................................................5
2.1车道线检测技术概述...................................7
2.2卷积神经网络在图像处理中的应用.......................8
2.3车道线检测的挑战与研究进展..........................10
3.系统需求分析...........................................12
3.1功能需求............................................13
3.2性能需求............................................14
3.3系统集成需求........................................15
4.数据采集与预处理.......................................16
4.1数据来源与采集方法..................................17
4.2数据标注规范........................................18
4.3图像预处理流程......................................19
5.卷积神经网络设计与实现.................................20
5.1网络架构选择........................................21
5.2模型训练策略........................................23
5.3模型评估与优化......................................24
6.车道线检测系统实现.....................................26
6.1系统架构设计........................................27
6.2硬件选型与配置......................................28
6.3软件实现与调试......................................29
7.实验与结果分析.........................................31
7.1实验环境搭建........................................32
7.2实验数据集划分......................................33
7.3实验结果展示........................................34
7.4结果分析与讨论......................................34
8.系统测试与应用案例.....................................35
8.1系统功能测试........................................37
8.2系统性能测试........................................38
8.3应用案例介绍........................................39
9.总结与展望.............................................40
9.1研究成果总结........................................41
9.2存在问题与改进方向..................................42
9.3未来工作展望......................