文档详情

磨煤机的资料.doc

发布:2017-04-01约6.06千字共17页下载文档
文本预览下载声明
中速磨对煤的可磨性指数(HGI)的变化比较敏感。德国Babcock公司提供的资料表明,该公司设计的MPS磨煤机,一般可磨性指数每变化1,出力约变化2.4%~2.6%,且可磨性指数越低,出力变化的幅度越大。 当原煤灰分超过20%时,由于磨煤机内循环量的增加,会导致磨煤机出力下降。 在中速磨煤机中,干燥剂对原煤的干燥呈逆向流动方式,热空气与进入磨煤机的原煤不能预先接触,因此原煤水分的大小对碾磨出力影响较大。水分越高,磨煤机出力越小。过大的水分会导致磨辊处煤及煤粉粘结,影响磨煤机安全运行。 随着煤粉变粗,磨煤机出力增大。因此,当锅炉在短期尖峰负荷下运行,要求更高的磨煤机出力时,可通过少量增加煤粉细度值来达到。 磨煤机出力还与磨煤机碾磨压力有关。碾磨压力主要来自弹簧、液压缸或其它压紧装置的压紧力,其次是磨辊的自重力,前者是可以调节的。碾磨压力过大,将加速碾磨部件的磨损,过小将使磨煤出力降低、煤粉变粗。因此,运行中要求碾磨压力保持一定。随着碾磨部件的磨损,碾磨压力相应减小,运行中需随时进行调整。 中速磨的最小出力一般能降低到额定出力的40%而维持正常运行。低于最小出力运行,由于磨盘上煤层过薄,会造成碾磨部件金属间的直接接触,导致强烈磨损和振动等事故。 磨煤机出力的调整还与投运的磨煤机台数有关。当锅炉负荷下降时,合理的运行方式还需考虑磨煤机不同运行负荷下对煤粉细度和风粉 进口机组磨煤机运行自动控制水平很高,锅炉负荷变化的信号首先是调整给煤机的给煤量,并相应调节一次风机的流量。在40%~100%磨煤机运行负荷范围内,磨煤机通风量与磨煤机负荷率间呈线性关系,但对制粉系统最小通风量的要求,决定了通风量必须维持在额定值的70%,通风量与负荷变化的关系如图2所示。由图可见,当磨煤机以额定出力和相应额定通风量运行时,此时可获得一个对燃烧合适的风煤比:随着磨煤机出力下降,风煤比增大,煤粉浓度大降。低负荷运行时,炉膛温度水平本已降低,又加上风煤比过大,对煤粉着火和稳定燃烧会更加不利。挥发分越低的煤种,此问题就越突出。国产机组自动控制水平较低,许多电厂在中速磨变负荷运行时基本不调整其通风量,更使低负荷运行时风煤比大增。因此可见,中速磨煤机不适宜总在低负荷下运行,调整制粉系统及磨煤机运行方式时,应充分考虑到这一影响。锅炉配有多台磨煤机时,应限制运行磨煤机的最低负荷在75%以上,当不足以维持最低限额时,则应采取逐台停磨方式以适应锅炉负荷的要求。 图2 MPS磨煤机通风量(一次风量)与磨 煤机负荷率的关系 3.33.33.33.3 煤粉细度煤粉细度煤粉细度煤粉细度 当磨煤机运行负荷降低时,由于其通风量与负荷呈线性关系,风量绝对值减少,风环处、磨煤机内及分离器空间气流速度均下降,能托起和携带走的煤粉粒径减小,煤粉变细。此外,运行中磨煤机的碾磨压力对煤粉细度也有显著影响,图3是对MPS-118型磨煤机的试验结果。由图可见,当磨煤机负荷不变时,随着碾磨压力的提高,煤粉变细;当碾磨压力不变时,随着负荷的增大,煤粉变粗。碾磨压力变化对煤粉细度的影响随磨煤机负荷的加大而愈加显著。因此,当磨煤机处于低负荷运行时,可适当降低施加的碾磨压力,这既有利于减少磨煤机的振动,又不至于对煤粉细度造成明显影响。 磨煤机的运行温度磨煤机的运行温度磨煤机的运行温度磨煤机的运行温度 一般来讲,磨煤机出口气粉混合物的温度越高,越有利于煤粉的干燥过程,但温度值不能超过安全限度。若出口温度高于规定值,高温会驱使挥发分从煤中逸出,增加燃料着火的潜在可能性;出口温度低于规定值,会因煤不能获得充分的干燥以致吸附在磨煤机内部和煤粉管中。使煤粉管堵塞以及导致磨煤机、煤粉管着火。 中速磨设计出口温度一般取为70~90 ℃。对于高挥发分煤种,最低应维持65~70 ℃;对于低挥发分煤种不应高过90~95 ℃。磨煤机出口最低温度应比露点高10 ℃,但最低不能低于60 ℃,以避免煤粉结块。基于干燥介质含氧量、制粉系统布置、原煤挥发分和磨辊的限制,运行中最高紧急停运温度为110 ℃。 磨煤机出口温度控制靠调节磨煤机入口风温来实现。入口风温取决于磨煤机的热平衡条件,其中原煤水分的影响最大。在空预器一次风出口风温的基础上,通过改变掺入的冷风份额调节进入磨煤机的一次风温 煤粉爆炸原因 煤粉爆炸的原因主要是煤缓慢氧化导致煤的热解,产生可燃气体,可燃气体与空气混合,达到一定浓度比例后遇火发生连锁爆炸。煤粉的爆炸需要3个基本条件,即煤粉的存在、合适的氧浓度和足够的点火能量。煤粉爆炸的过程是悬浮在空气中的煤粉的强烈燃烧过程,其主要过程[5]有:(1)煤粉颗粒受热后表面温度上升。(2)颗粒表面的分子发生热解或干馏,产生的可燃气体与周围的空气混合。(3)气
显示全部
相似文档