变频器在煤气恒压控制系统中应用与实现.docx
文本预览下载声明
变频器在煤气恒压控制系统中应用与实现作 者:中国铝业 青海分公司 韩 敏 王彦清1 引言 随着电力电子技术的发展,变频器在各行业中已得到广泛的应用,变频调速技术应用于设备拖动系统中,实现了电机软启动、连续调速和节能运行目的。变频器的低频、低电流启动,使设备的机械冲击力显著降低,也避免了电机启动时对电网的影响;实现了异步电机的平滑调速功能;提高了设备的工艺性能,延长了使用寿命和实现节能运行。本文主要阐述应用变频器对热媒锅炉煤气恒压供给系统的控制原理和实现方法。2 设备概况 煤气恒压供给是阳极成型热媒锅炉正常工作的重要因素之一。在实际中,由于煤气生产设备的不稳定性和用户的随机性,使煤气供给系统的压力波动较大(0.6~5.1kpa之间),对锅炉的稳定燃烧影响很大:煤气压力太低,会引起锅炉燃烧器熄火和热值降低等问题,导致热媒油温度的提高或供热不足,影响阳极质量和产能;过高会造成锅炉燃烧不充分,浪费燃料。为保障预焙阳极碳块成型正常生产,我厂一、二期成型热媒锅炉系统均设计了煤气增压装置。原煤气增压风机采用工频电源供电的交流异步电机拖动,挡板开度调节锅炉煤气流量,以实现锅炉稳定燃烧和温度控制。其控制原理是:当煤气进口管道内压力低于4.6kpa时,煤气增压风机自动启动运行;当进口煤气压力高于4.8kpa时,加压风机自动停机。这种增压控制方式,虽能保证热媒锅炉所需煤气供给,但风机长期工作在高转速(2924r/min)、低负载运行状态,风机机体、传动轴支撑轴承座等部件振动大(如附表所示),轴承磨损剧烈,其寿命很短。据维修统计,四套新轴承连续使用60~70天就得更换,风机故障率高、维修频繁、费用高;风机长期工作在低负载(或空载)状态,电能浪费大。故中国铝业青海分公司2005年5月,对热媒系统增压风机控制系统实施了变频器控制改造。实际证明,改造效果良好。附表 煤气加压风机工频工作状态下的有关参数注: 1、a项为负载端轴承座的径向振动值;b项为风机拖动端轴承座振动值。 2、风机轴承座振动超过13mm/s时,轴承温度升高到75℃以上,就会引起轴承座震裂、轴承抱死和风机叶轮出现裂纹等后果,故在日常点检中,当检测到其振动达到12mm/s时,就采取重点监护运行,并及时安排检修工作。3 变频器控制系统设计 在系统设计中,通过对国内市场上多种变频器性能和控制特点比较,并结合增压风机的工作特点和实际现状,最终选择了abb公司生产的cas800系列的变频器。这种变频器除具有其它变频器的一般控制功能外,还具有pid控制、多信号输入、睡眠功能、设定值修正等多种控制功能,能很方便地实现煤气恒压控制系统。3.1 系统配置 (1)风机拖动电机参数:型号qu180 m2bg;功率22kw;额定转2925r/min;额定电流42a;额定电压380v。 (2)变频器参数:cas800—30kva 380v。3.2 控制原理 煤气风机拖动机构由一台22kw交流异步电机驱动,采用acs800-30kva变频器控制。风机变频器通过外部电位器设定值与煤气进口管道内压力实时测量值相比较,作为增压变频器调速初始给定信号,并通过pid调节功能修正后,作为实际频率控制给定值,实现风机转速调节,达到恒压控制的目的。其系统原理如图1所示;其变频器模拟信号接线如图2所示。图1 增压风机变频器控制原理图2 变频器给定信号接线图 变频器pid控制功能,能很好地抑制煤气供应系统压力波动和风机喘振引起的压力抖动现象,抑制对变频器的扰动问题。通过大积分时间常数设定,使煤气压力扰动加入到系统的瞬间,积分不起作用,因积分调节作用是滞后的。调节器的滞后时间越大,调节速度越慢,这十分有利系统稳定,滞后性有减小波动,增加系统的抗干扰能力的作用。3.3 睡眠功能参数设定 根据实际监测和统计,煤气压力通常在夜间会升高(达到4.5kpa左右),会使电机工作在超低速状态,为节约电能,对变频器设置了睡眠功能控制。 恒压控制系统的睡眠功能设置原理:当煤气供应系统压力达到4.5kpa以上(煤气其它用户消耗量减少,会使煤气供给管网内压力增高)。这时为满足锅炉正常运行的压力要求,pid过程控制器就降低电机的转速,电机不会停止,而保持低速运转状态。由于管路存在的自然压力损耗和低速运行时,离心风机的低效率,变频器设定的压力值一般要求较高于实际所需压力值。当睡眠功能检测到这种低速情况时,经睡眠延时后,将停止这种超低速运转。在控制系统进入睡眠模式后,变频器仍然处在监视煤气压力状态。当压力低于最小允许值以下时,并经唤醒延时后,则重新启动风机工作。其睡眠控制逻辑关系如图3所示。图3 变频器睡眠功能逻辑设定 在图3中,其有关参数设定要求及实际设定值如下: (1)40.21—睡眠设定值。如果电机速度低于此设定值(10hz),且在时间差内大于睡眠延时时间,则变
显示全部