电磁兼容基础04 电感性耦合.ppt
文本预览下载声明
P* 4.1 磁场耦合的基本原理 4.2 外磁场对回路的耦合 4.3 两平行导线-大地回路的磁场耦合 4.4 屏蔽体对磁耦合的抑制 4.5 带电导线磁场的屏蔽 第四讲 电感性(磁场)耦合 P* 4.1 磁场耦合的基本原理 在两个及两个以上导体回路形成的带电系统中,如果一个导体回路中流有电流,那么在其周围空间产生的磁场就会与相邻的另一个导体回路相交链,产生磁链,形成磁耦合。当磁场随时间变化时,由于电磁感应,在该导体回路交链的磁链将在该导体回路中产生感应电压,反之亦然。说明这两个导体回路可以通过磁场耦合方式相互作用和相互影响。我们将这种耦合方式称为磁场耦合,在电路上可以应用互电感的概念来描述磁场耦合,因此,我们又将磁场耦合称为电感性耦合。 P* 4.1 磁场耦合的基本原理 磁场耦合可以借助于电磁感应定律来分析。一个由n个导体回路组成的带电系统。为论述方便,设导体回路的编号依次为1、2、…、n,相应导体上的磁链和电流分别为?1、?2、…、?n和i1、i2、…、in。由电磁场理论可知,n个回路上的磁链与其上电流的关系为 其中,Lkk 称为导体回路k的自电感,Lkm(k?m)称为导体回路k与导体回路m之间的互电感,一般又习惯将导体回路k与导体回路m之间的互电感记为Mkm。显然,电感只与导体回路的形状、尺寸、相互位置以及磁介质的磁导率有关,与导体回路的电流无关。无论是自电感还是互电感,它们都为正值,且Lij= Lji。当导体回路电流随时间以角频率?按正弦规律变化时,根据电磁感应定律,各导体回路中的感应电压可以应用如下公式进行计算 P* 4.2 外磁场对回路的耦合 Example 1: High Impedance Loop in a Uniform H-Field Consider the circuit below consisting of two resistors connected together with wire forming a 5-cm by 3-cm loop. If the circuit is located in a 150 kHz, 2.0 A/m magnetic field, determine the voltage induced across the 10-ohm resistor. The direction of the magnetic field is perpendicular to the plane of the paper (i.e. maximum coupling). Answer: 2.4 mV Hint: in this case, the distributed loop impedance (including inductance and resistance) is much smaller than the lumped impedance. P* 4.2 外磁场对回路的耦合 Example 2: Low Impedance Loop in a Uniform H-Field Consider the circuit below consisting of a 2-ohm resistor connected to a 5-cm by 3-cm loop of wire. If the circuit is located in an 80-MHz, 500-μA/m magnetic field, determine the voltage induced across the 2-ohm resistor. The direction of the magnetic field is perpendicular to the plane of the paper (i.e. maximum coupling). Answer: 15 μV Hint: the inductance of this loop is 125 nH. At 80 MHz, the inductive reactance of the loop is then ωL = 63 ohms. Thus, the current is determined primarily by the loop inductance. P* 4.3 两平行导线-大地回路的磁场耦合 回路1对回路2的磁场耦合等价于在回路2上串联了电动势jωMI1 P* 电场耦合和磁场耦合的区别 电场耦合等效为并联电流源 磁场耦合等效为串联电压源 (A) Equivalent circuit for electric field coupling; (B) equivalent circuit for magneti
显示全部