BP神经网络在城市有轨电车GPSRFID组合定位中的应用研究.docx
文本预览下载声明
第 58 卷 第 12 期
2014 年 12 月
铁 道 标 准 设 计
RAILWAY STANDARD DESIGN
Vol. 58 No. 12 Dec. 2014
文章编号: 1004-2954( 2014) 12-0125-05
BP 神经网络在城市有轨电车 GPS / RFID
组合定位中的应用研究
罗 淼,米根锁
( 兰州交通大学自动化与电气工程学院,兰州 730070)
摘 要: 在城市有轨电车定位系统中,单一的 GPS 定位方式已很难满足电车连续精确定位的要求。采用 GPS 和 RFID 组合定位的方法,可实现在弱信号环境下的连续精确定位。针对 GPS / RFID 组合定位时,因加入 RFID 观测 值带来的较高计算复杂度而引起定位时间延长,以及对系统定位误差影响不确定性等问题,建立基于 BP 神经网络 的城市有轨电车 GPS / RFID 组合定位模型。仿真结果表明,采用 BP 神经网络进行分析时,将 GPS 和 RFID 观测值 归一化后输入到训练好的网络中,可以在较短的时间内得到可靠的网络输出。经训练后的网络输出较未经训练的 输出更接近于期望值,且更为稳定,证明在 GPS 信号受遮挡条件下城市有轨电车定位系统的定位精度和定位时长 得到了有效改善。
关键词: 城市有轨电车; GPS / RFID 组合定位; BP 神经网络; 定位精度
中图分类号: U482. 1 文献标识码: A DOI: 10. 13238 / j. issn. 1004 - 2954. 2014. 12. 030
Application of BP Neural Network to the Analysis of Positioning Deviation on City Trams
LUO Miao,MI Gen-suo
( College of Automatic & Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
Abstract: It is difficult to realize the continuous and precise positioning in the positioning system of city trams only by GPS,while it can be performed with the integration of GPS and RFID in the environments with weak signals. A model of GPS / RFID integrated positioning of city trams with the application of BP neural network is established to solve the problems of prolonged positioning caused by high computation complexity and the uncertainties of the impact on the system positioning errors with the introduction of RFID observations in GPS / RFID integrated positioning. The analysis indicates that the reliable network output values are to be obtained in a short period of time after the input of the normalized GPS and RFID observations into the trained network in positioning analysis with the application of BP neural network. The output values of the trained network,which are more stable and closer to the expectations than the ones of the untrained network,demonstrate the improvement of positioning accuracy and the s
显示全部