毕业论文--数字图像边缘检测的研究与实现【毕业论文】.doc
文本预览下载声明
数字图像边缘检测的研究与实现
摘要
主要分析几种应用于数字图像处理中的边缘检测算子,根据它们在实践中的应用结果进行研究,主要包括:Robert 边缘算子、Prewitt 边缘算子、Sobel 边缘算子、Kirsch 边缘算子以及Laplacian 算子等对图像及噪声图像的边缘检测,根据实验处理结果讨论了几种检测方法的优劣.
关 键 词:数字图像处理;边缘检测;算子
引言
图像的边缘是图像的重要特征之一, 数字图像的边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础, 其目的是精确定位边缘, 同时较好地抑制噪声, 因此边缘检测是机器视觉系统中必不可少的重要环节。然而, 由于实际图像中的边缘是多种边缘类型的组合, 再加上外界环境噪声的干扰, 边缘检测又是数字图像处理中的一个难题。
目录
边缘的概念………………………………………………………………3
边缘检测…………………………………………………………………4
边缘检测算子的应用……………………………………………………8
边缘检测方法性能比较……………………………………………………………………………………………………………………………15
第1章:边缘检测
1.1 边缘的介绍
图像边缘是图像最基本的特征,边缘在图像分析中起着重要的作用。所谓边缘是指图像局部特性的不连续性。灰度或结构等信息的突变处称为边缘,例如:灰度级的突变,颜色的突变,纹理结构的突变等。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。
边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection).由于边缘检测十分重要,因此成为机器视觉研究领域最活跃的课题之一.本章主要讨论边缘检测和定位的基本概念,并使用几种常用的边缘检测器来说明边缘检测的基本问题.
在讨论边缘算子之前,首先给出一些术语的定义:
边缘点:图像中具有坐标且处在强度显著变化的位置上的点.
边缘段:对应于边缘点坐标及其方位,边缘的方位可能是梯度角.
边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法.
轮廓:边缘列表,或是一条表示边缘列表的拟合曲线.
边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序.
边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程.
边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.
边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘.
1.2 边缘检测算子
边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键.
边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的 边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。
边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。
Roberts,Sobel,Prewwit是基于一阶导数的边缘检测算子,图像的边缘检测是通过2*2或者3*3模板作为核与该图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。
Laplace边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。Laplace算子的改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代
显示全部