文档详情

面向复杂场景的RGBT目标跟踪方法研究.pdf

发布:2025-04-05约10.18万字共60页下载文档
文本预览下载声明

Abstract

RGBTtargettrackingaimstoeffectivelyfusevisibleandthermalinfraredvideosequences

together.TherearetwomainreasonswhyRGBTtargettrackingcanachieveall-weatherefficient

monitoring.Ontheonehand,RGBTtargettrackingcaneffectivelyusethermalinfraredinformation

toprovidestronginformationcompensationfortheapparentcharacteristicsofvisiblelighttargets

underpoorlightingconditions.Ontheotherhand,visiblelightinformationcanassistinsolvingthe

thermalcrossproblemfacedinthermalinfraredimageprocessing.Althoughtherearemanyresearch

resultsinrelatedfields,theystillfacechallengessuchasdynamicocclusionandsimilarbackground.

Withtherapiddevelopmentofartificialintelligenceandbigdataprocessingtechnology,deep

learninghasdevelopedinthedirectionofcross-taskandmulti-modal.Thisdevelopmenttrendcan

providesceneinformationforsolvingtheinherentdifficultiesinRGBTtargettracking.Inorderto

effectivelyutilizemulti-tasksceneinformation,thispaperdeeplystudiesRGBTobjecttracking

methodforcomplexscenesfromthreelevels:feature,updatestrategyandattention.Theresearch

innovationsofthispaperareasfollows:

(1)Featurelevel:AimingatthelimitationthattraditionalRGBTtargettrackingmethodsonly

focusonthefeaturerepresentationlearningofthetargettobetracked,atargettrackingmethodbased

onsceneconsistencyisproposed.Thedesignintentionoftheproposedmethodistofindthat

strengtheningtheconsistencyofglobalreasoningofdifferentmodalitiesishelpfultoimprovethe

robustnessoftargetfeaturesandsolvetheproblemofincompletemodalinformationcausedby

complexbackgrounds.Basedonthis,undertheframework

显示全部
相似文档