文档详情

2018年医学统计学总结.doc

发布:2018-10-14约1.66万字共20页下载文档
文本预览下载声明
go 医学统计学总结 一.绪论 1,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。 2,医学统计学的主要内容: 1) 统计研究设计 调查研究设计和实验研究设计 2) 医学统计学的基本原理和方法 研究设计和数据处理中的基本统计理论和方法。A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。 3)医学多元统计方法 多元线性回归和逐步回归分析、判别分析、聚类分析、主成分分析、因子分析、logistic回归与Cox回归分析。 3,统计工作步骤: 1) 设计 明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。 2) 搜集材料 A, 搜集材料的原则 及时、准确、完整 B, 统计资料的来源 医学领域的统计资料的来源主要有三个方面。一是统计报表,二是经常性工作记录,三是专题调查或专题实验。 C, 资料贮存 3) 整理资料 a检查核对b设计分组c拟定整理表d归表 4) 分析资料 统计分析包括统计描述和统计推断 4,同质(homogeneity):指被研究指标的影响因素相同。 变异(variation):同质基础上的各观察单位间的差异。 变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量 变量值:变量的观察结果或测量值。 变量类型 变量值表现 实例 资料类型 数值变量 离散型 定量测量值,有计量单位 产前检查次数 计量资料 连续型 身高 分类变量 无序 二分类 对立的两类属性 性别(男女) 计数资料 多分类 不相容的多类属性 血型(A,B,O,AB) 有序 多分类 类间有程度差异的属性 受教育程度(小学,中学,高中,大学…) 等级资料 5,总体(population) 根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。总体具有的基本特征是:同质性 样本(sample) 从总体中随机抽取部分观察单位,其变量值的集合构成样本。样本必须具有代表性。代表性是指样本来自同质总体,足够的样本含量和随机抽样的前提。 统计量(statistics)描述样本变量值特征的指标(样本率,样本均数,样本标准差)。 参数(parameter)描述总体变量值特征的指标(总体率,标准差,总体均数)。 抽样误差(sampling error):由于个体差异的存在,即使在同一整体中随机抽取若干样本,各样本的统计量往往不等,统计量与参数也会有所不同。这种因抽样研究引起的差异称抽样误差。 随机事件(random event)对随机试验的各种可能结果的集合。 概率(probability) 描述随机事件发生的可能性大些哦的一个度量。 小概率事件 若随机事件A的概率P(A)≤α,习惯上,α=0.05时,就称A为小概率事件。其统计学意义是小概率事件在一次随机试验中认为不会发生。 抽样误差 1,抽样误差(sampling error) 由抽样而造成的样本统计量与总体参数之间的差异或各样本统计量之间的差异。在医学统计学中,常把由抽样造成的样本均数与总体均数间的差异称为均数的抽样误差;由抽样造成的样本率与总体率之间的差异称为率的抽样误差。 2,样本均数的标准差(简称标准误,standard error) 反映均数的抽样误差大小的指标。大,抽样误差大;反之,小,抽样误差小。 (3.1) 实际工作中往往未知的,可用样本标准差s作的估计值,计算标准误的估计值。 (3.2) 3,标准误的用途:a,衡量样本均数的可靠性;b,估计总体均数的置信区间;3,用于均数的假设检验。 4,标准误的估计值的用途: a,描述抽样误差的大小; b,总体参数的估计; c,用来进行假设检验。 5,率的抽样误差:由抽样造成的样本率与总体率的差异称为率的抽样误差。 衡量率的抽样误差大小的指标是率的标准误。越小,率的抽样误差越小;越大,率的抽样误差越大。 (3.3) 其中为总体率。实际工作中,由于往往是未知的,可用样本率p作的估计值,计算率的标准误的估计值。 (3.4)。 标准差(s) 标准误 计算公式s= (1)表示观察值的变异程度 (1)
显示全部
相似文档