文档详情

第五章:神经网络理论基础.ppt

发布:2018-01-24约2.39千字共99页下载文档
文本预览下载声明
第五章:神经网络理论基础;神经生理学和神经解剖学证明,人的思维是由脑完成的。 神经元是组成人脑的最基本单元,能够接受并处理信息。 人脑约由101l~1012个神经元组成,每个神经元约与104~105个神经元通过突触联接,形成错纵复杂而又灵活多变的神经网络。 虽然,每个神经元都比较简单,但是,如此多的神经元经过复杂的联接却可以演化出丰富多彩的行为方式。 人脑是一个复杂的信息并行加工处理巨系统。 探索脑组织的结构、工作原理及信息处理的机制,是整个人类面临的一项挑战,也是整个自然科学的前沿。 ;§5.1 引言;§5.1 引言;§5.2 神经网络模型;图5.2.1是两个生物神经元的连接情况 ;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型; ;(3) 对称型阶跃函数 ;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;§5.2 神经网络模型;一、神经网络的工作过程 ;二、神经网络的特点 ;是存贮在一个地方,而是分布在不同的位置。即特定的信息不是存贮在神经网络的某一部分,而是分布在网络中所有神经元之间的连接权值上。这种分布式存贮方式的优点是当神经网络的局部受损时,仍具有恢复原来信息的能力。 ;神经网络中各神经元之间的权值可以事先定出,也可以按照给定的学习规则自动的调整。神经网络的自学习决定了神经网络具有自组织动态演化性能。 ;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基???;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;§5.3 神经网络学习基础;解之得;当   时,解方程组      即可得其对应的特征向量:;二、泰勒级数(Taylor series) ;由式(5.3.17)可知,解析函数  可以取其Taylor级数的有限项近似估计。如果   ,则估计值是精确的;当 越接近于 时,估计值越接近于精确值;若 离 较远,则只有更高阶的Taylor级数近似估计值接近于精确值。这是因为Taylor级数中每个相邻的后继项都包含   的高次项,  越接近于  ,这些项将按几何级数减少。 ;给定 n 维多变量函数           ,该函数在点 上的Taylor级数展开为:;式(5.3.18)给出的多变量函数的Taylor级数展开很繁琐,但是如果利用梯度和Hessian矩阵来描述,那么多变量函数的Taylor级数展开会变得十分整洁,于是有;   Hessian矩阵 ; Hessian矩阵;当 时,若对于所有  都有        成立,则称 为  的强极小点,  为函数  的强极小值。若对所有   都有        成立,则称 为  的全局极小点,  为函数  的全局极小值。;当 时,若对于所有  都有        成立,则称 为  的强极大点,  为函数  的强极大值。若对所有   都有        成立,则称 为  的全局极大点,  为函数  的全局极大值。;① 多变量函数极值存在的必要条件 ;由于 是函数  的极小点,故     不能小于  ,与式(5.3.23)相矛盾。因此,        不能成立,由式(5.3.22)可知唯一的选择是:;定义5.3.8:正定矩阵(Positive definite matrix)   一个矩阵 ,对于任意不等于零的向量  ,都有       成立,则称 为正定矩阵。;② 多变量函数极值存在的充分条件 ;由式(5.3.27)可知对于函数  存在强极小点的二阶充分条件是其Hessian矩阵是一个正定矩阵。当然函数  有正定的Hessian矩阵
显示全部
相似文档