吉林省长春市汽开区2023-2024学年中考数学最后冲刺模拟试卷含解析.doc
吉林省长春市汽开区2023-2024学年中考数学最后冲刺模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.“射击运动员射击一次,命中靶心”这个事件是()
A.确定事件B.必然事件C.不可能事件D.不确定事件
2.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是()
A.①② B.②③ C.①④ D.③④
3.如图所示的工件,其俯视图是()
A. B. C. D.
4.下列二次根式,最简二次根式是()
A.8 B.12 C.5 D.
5.若正六边形的边长为6,则其外接圆半径为()
A.3 B.3 C.3 D.6
6.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()
A.30° B.60° C.50° D.40°
7.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()
A.8073 B.8072 C.8071 D.8070
8.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()
A.PD B.PB C.PE D.PC
9.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()
A.76° B.78° C.80° D.82°
10.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是()
A.点A B.点B C.点C D.点D
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为_____.
12.已知x(x+1)=x+1,则x=________.
13.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.
14.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.
15.二次函数中的自变量与函数值的部分对应值如下表:
…
…
…
…
则的解为________.
16.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.
三、解答题(共8题,共72分)
17.(8分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
(1)求抛物线的表达式;
(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
18.(8分)计算:(-1)-1-++|1-3|
19.(8分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.
求证:AP=BQ;当BQ=时,求的长(结果保留);若△APO的外心在扇形COD的内部,求OC的取值范围.
20.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
21.(8分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.
求抛物线y=ax2+2x+c的解析式:;点D为