一种粒子群优化贝叶斯网络的财务预警方法.pdf
文本预览下载声明
Computer Science and Application 计算机科学与应用, 2016, 6(3), 195-201
Published Online March 2016 in Hans. /journal/csa
/10.12677/csa.2016.63025
Particle Swarm Optimized Bayesian
Network for Financial Early Warning
Mingjuan Xu, Shaoshuang Xu
School of Information Engineering, West Anhui University, Lu’an Anhui
th th th
Received: Mar. 8 , 2016; accepted: Mar. 27 , 2016; published: Mar. 30 , 2016
Copyright © 2016 by authors and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
/licenses/by/4.0/
Abstract
It has important theoretical significance and practical value to swarm intelligent forecasting and
its applications in financial early warning of enterprises. On basis of the construction of the evalu-
ation index system of financial capability of corporation, this paper proposes a new method of fi-
nancial early warning by cooperating particle warm optimization into the parameter learning of
Bayesian network. The experimental results on the data of a group of listing companies and com-
parisons have shown that the proposed algorithm has better effectiveness and the average correct
rate in the financial crisis early warning.
Keywords
Financial Early Warning, Particle Swarm Optimization (PSO), Bayesian Network, Cash Flow Capacity,
Data Mining
一种粒子群优化贝叶斯网络的财务预警方法
徐明鹃,徐绍双
皖西学院信息工程学院,安徽 六安
收稿日期:2016年3月8 日;录用日期:2016年3月27 日;发布日期:2016年3月30 日
摘 要
群智能预测及其在企业财务危机预警中的应用研究具有重要的理论意义和实用价值。文中在在构建上市
文章引用: 徐明鹃, 徐绍双. 一种粒子群优化贝叶斯网络的财务预警方法[J]. 计算机科学与应用, 2016, 6(3): 195-201.
/10.12677/csa.2016.63025
徐明鹃,徐绍双
公司财务能力评价指标体系的基础上,提出一种粒子群优化贝叶斯网络参数学习的财务预警方法,经选
取一组上市公司某三年数据分析,实验表明提出的算法在公司财务危机预警的平均正确率可获得较好的
预测效果。
显示全部