文档详情

多用户检测技术毕业论文final【参考】.docx

发布:2017-01-02约1.31万字共25页下载文档
文本预览下载声明
学校代码10126学类号密级本科毕业论文(设计)学院、系 电子信息工程学院 电子系专业名称电子信息科学与技术年 级2008级学生姓名 胡波指导教师 孙锴2012年5月31日多用户检测技术研究摘要:多用户检测是宽带CDMA通信系统中抗干扰的关键技术。多用户检测是综合考虑同时占用某个信道的所有用户或某些用户,消除或减弱其它用户对任一用户的影响,并同时检测出所有这些用户或某些用户的信息的一种信号检测方法。本文主要研究了CDMA移动通信系统的各种多用户检测算法的原理和优缺点。首先介绍了多用户检测技术的基本分类,主要有线性多用户检测和非线性多用户检测两类,前者包括解相关检测、线性最小均方误差检测,后者则以干扰抵消多用户检测为主,又分为串行和并行干扰消除多用户检测。然后对各类多用户检测技术的特点进行了分析比较。文中通过仿真比较分析了传统检测器、串行干扰抵消检测器和解相关检测器等经典多用户检测器的误码率。随着多用户检测技术的发展越来越成熟,其应用领域也不断扩大,多用户检测成为目前研究的一个热点。关键词:多用户检测,串行干扰消除,并行干扰消除Research On Muti-User Detection TechniqueAuthor: Hu BoTutor: Sun KaiAbstract:Multi-user detection is an anti-interference key technology in broadband CDMA system. Multi-user detection is a method for signaldetection; it overall evaluates all users orcertainusers who occupy some channels, other users to anyusers influence will be eliminated or weakened. In themeantime, information of all users or certain users isdetected.This article focuses on the principle and algorithm of Multiuser Detection (MUD) and discusses the main techniques available for data detection in wireless CDMA systems. MUD can be classified into two main parts: Linear MUD and Nonlinear MUD. Linear MUD includes Decorrelating Detection and Minimum Mean-Square Error (MMSE) Linear MUD, while Nonlinear MUD includes Successive Interference Cancellation (SIC) and Parallel Interference Cancellation (PIC). In this paper, the pros and cons of recent and old techniques available in the literature are discussed. The performances of BER of some typical conventional multi-user detectors, successive interference cancellation detector (SIC) and decorrelating detector are compared and analyzed through MATLAB simulation.With the multi-user detection technique becoming increasingly sophisticated, theirapplications have also expanded continuously, research of multi-user detection on thesystem become a hot topic at present.Key words:Multi-user detection (MUD),SIC, PIC多用户检测技术研究1绪论1.1多用户检测技术产生背景第三代移动通信系统是能够满足国际电联提出的IMT-2000/FPLMTS系统标
显示全部
相似文档