低碳钢和铸铁拉伸和压缩试验.doc
文本预览下载声明
低碳钢和铸铁拉伸压缩实验报告
摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理
一.拉伸实验
1.低碳钢拉伸实验
拉伸实验试件 低碳钢拉伸图
在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:
低碳钢拉伸应力-应变曲线
(1)弹性阶段(Ob段)
在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。
线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段(bc段)
超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极限(σs)。
当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段(ce段)
经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。
若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的强度极限(σb),强度极限所对应的载荷为试件所能承受的最大载荷Fb。
(4)局部变形阶段(ef段)
试样拉伸达到强度极限σb之前,在标距范围内的变形是均匀的。当应力增大至强度极限σb之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。
(5)伸长率和断面收缩率
试样拉断后,由于保留了塑性变形,标距由原来的L变为L1。用百分比表示的比值
δ=(L1-L)δ也越大。因此,伸长率是衡量材料塑性的指标。
原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的 比值
Ψ=(A-A1)Ψ也是衡量材料塑性的指标。
所以,低碳钢拉伸破坏变形很大,断口缩颈后,端口有45度茬口由于该方向上存在最大剪应力τ造成的,属于剪切破坏 断口移中图
铸铁拉伸应力-应变曲线
铸铁拉伸破坏断口,属于拉伸破坏呈腰鼓形塑性变形韧性材料的抗剪切强度小于抗拉伸强度脆性材料的抗剪切强度大于抗拉伸强度
1
显示全部