薄膜的生长过程课件.doc
文本预览下载声明
薄膜的生长过程
射向基板及薄膜表面的原子、分子与表面相碰撞,其中一部分被反射,另一部分在表面上停留。
停留于表面的原子、分子,在自身所带能量及基板温度所对应的能量作用下,发生表面扩散(surface diffusion)及表面迁移(surface migration),一部分再蒸发,脱离表面,一部分落入势能谷底,被表面吸附,即发生凝结过程。
凝结伴随着晶核形成与生长过程,岛形成、合并与生长过程,最后形成连续的膜层。
在真空中制造薄膜时,真空蒸镀需要进行数百摄氏度以上的加热蒸发。
在溅射镀膜时,从靶表面飞出的原子或分子所带的能量,与蒸发原子的相比,还要更高些。这些气化的原子或分子,一旦到达基板表面,在极短的时间内就会凝结为固体。
也就是说,薄膜沉积伴随着从气相到固相的急冷过程,从结构上看,薄膜中必然会保留大量的缺陷。
此外,薄膜的形态也不是块体的,其厚度与表面尺寸相比相差甚远,可近似为二维结构。
一、薄膜的生长过程:新相的成核与薄膜的生长两个阶段
1、成核阶段
在薄膜形成的最初阶段,一些气态的原子或分子开始凝聚到衬底上,从而开始了所谓的形核阶段。由于热涨落的作用, 原子到达衬底表面的最初阶段,在衬底上成了均匀细小、而且可以运动的原子团(岛或核)。
当这些岛或核小于临界成核尺寸时,可能会消失也可能长大;而当它大于临界成核尺寸时,就可能接受新的原子而逐渐长大。
2、薄膜生长阶段
一旦大于临界核心尺寸的小岛形成,它接受新的原子而逐渐长大,而岛的数目则很快达到饱和。小岛像液珠一样互相合并而扩大,而空出的衬底表面上又形成了新的岛。形成与合并的过程不断进行,直到孤立的小岛之间相互连接成片,一些孤立的孔洞也逐渐被后沉积的原子所填充,最后形成薄膜。
二、薄膜生长的三种模式-岛状、层状和层状-岛状生长模式
1、岛状生长(Volmer-Weber)模式 :
被沉积物质的原子或分子更倾向于自己相互键合起来,而避免与衬底原子键合,即被沉积物质与衬底之间的浸润性较差;金属在非金属衬底上生长大都采取这种模式。对很多薄膜与衬底的组合来说,只要沉积温度足够高,沉积的原子具有一定的扩散能力,薄膜的生长就表现为岛状生长模式。
2、层状生长(Frank-van der Merwe)模式:
当被沉积物质与衬底之间浸润性很好时,被沉积物质的原子更倾向于与衬底原子键合。因此,薄膜从形核阶段开始即采取二维扩展模式,沿衬底表面铺开。在随后的过程中薄膜生长将一直保持这种层状生长模式。
3、层状-岛状(Stranski-Krastanov)生长模式:
在层状-岛状中间生长模式中,在最开始一两个原子层厚度的层状生长之后,生长模式转化为岛状模式。导致这种模式转变的物理机制比较复杂,但根本的原因应该可以归结为薄膜生长过程中各种能量的相互消长。
三种不同薄膜生长模式的示意图:
导致生长模式转变的三种物理机制
1、虽然开始时的生长是外延式的层状生长,但是由于薄膜与衬底之间晶格常数不匹配,因而随着沉积原子层的增加,应变能(应力)逐渐增加。为了松弛这部分能量,薄膜在生长到一定厚度之后,生长模式转化为岛状模式。
2、在Si的(111)晶面上外延生长GaAs,由于第一层拥有五个价电子的As原子不仅将使Si晶体表面的全部原子键得到饱和,而且As原子自身也不再倾向于与其他原子发生键合。这有效地降低了晶体的表面能,使得其后的沉积过程转变为三维的岛状生长。
3、在层状外延生长表面是表面能比较高的晶面时,为了降低表面能,薄膜力图将暴露的晶面改变为低能面,因此薄膜在生长到一定厚度之后,生长模式会由层状模式向岛状模式转变。注:在上述三种模式转换机理中,开始的时候层状生长的自由能较低; 但其后,岛状生长的自由能变低了,岛状生长反而变得更有利了。
心间还在通过合并过程而长大,小核心中的单个原子也会通过气相或通过表面扩散的途径转移到大核心中去。因此,降低衬底的温度还可以抑制原子和小核心的扩散,冻结形核后的细晶粒组织,抑制晶核的长大过程。它使得沉积后的原子固定在其初始沉积的位置上,形成特有的低温沉积组织。在降低温度的同时,采用粒子轰击的方法抑制三维岛状核心的形成,使细小的核心来不及由扩散实现合并就被沉积来的原子所覆盖,以此形成晶粒细小、表面平整的薄膜。
在大多数固体相变过程中,涉及的成核过程都是非自发成核的过程,即有其他的因素起到了帮助新相核心的生成。
一、非自发成核过程的热力学
原子团在衬底上形成初期,原子团很小,它可能吸收外来原子而长大,也可能失去已有的原子而消失,其自由能变化为
ΔGv是单位体积的相变自由能,它是薄膜成核的驱动力;vf、 ? fs、sv分别是气相(v)、衬底(s)与薄膜(f)之间的界面能; a1、a2、a3是与核心具
显示全部