植物的生殖和衰老.PPT
2.有机物质的转化(1)糖类物质转化——甜味增加淀粉→可溶性糖(2)有机酸类转化——酸味减少有机酸糖CO2+H2OK+、Ca2+盐(3)单宁物质转化——涩味消失单宁→氧化成过氧化物或凝结成不溶性物质产生芳香物质——香味产生苹果…乙酸丁酯,香蕉…乙酸戊酯,柑橘…柠檬醛果胶物质转化——果实变软原果胶(壁)→可溶性果胶、果胶酸、半乳糖醛酸淀粉→可溶性糖,色素物质转化——色泽变艳叶绿素(果皮)分解,类胡萝卜素稳定→黄色,形成花色素→红色。维生素含量增高IAA,GA,CTK下降,01ETH,ABA升高023.内源激素的变化果实成熟包含着复杂的生理生化变化,正被众多的植物生理生化学家和分子生物学家所重视。研究表明,果实成熟是分化基因表达的结果。果实成熟过程中mRNA和蛋白质合成发生变化。例如番茄在成熟期有一组编码6种主要蛋白质的mRNA含量下降;另一组编码4~8种蛋白质的mRNA含量增加,其中包括多聚半乳糖醛酸酶(PG)的mRNA。这些mRNA涉及到色素的生物合成、乙烯的合成和细胞壁代谢。而编码叶绿体的多种酶的mRNA数量减少。12果实成熟的分子生物学进展反义RNA技术的应用为研究PG在果实成熟和软化过程中的作用提供了最直接的证据。获得的转基因番茄能表达PG反义mRNA,使得PG活性严重受阻,转基因植株纯合子后代的果实中PG活性仅为正常的1%。在这些果实中果胶的降解受到抑制,而乙烯、番红素的积累以及转化酶、果胶酶等的活性未受到任何影响,果实仍然正常成熟,并没有像预期的那样推迟软化或减少软化程度。这些结果说明,虽然PG对果胶降解十分重要,但它不是果实软化的唯一因素,果实的软化可能不仅仅只与果胶的降解有关。尽管有实验表明,反义PG转基因对果实软化没有多大影响,但转基因果实的加工性能有明显改善,能抗裂果和机械损伤,更能抵抗真菌侵染,这可能与PG活性下降导致果胶降解受到抑制有关。也有少数报道转PG反义基因番茄在果实贮藏期可推迟软化进程。PG蛋白已从成熟的番茄、桃等果实中得到分离。基因工程在调节果实成熟中的应用,不仅有助于对成熟有关生理生化基础的深入研究,而且为解决生产实际问题提供了诱人的前景。一个成功的例子是ACC合成酶反义转基因番茄,现已投入商业生产。将ACC合成酶cDNA的反义系统导入番茄,转基因植株的乙烯合成严重受阻。这种表达反义RNA的纯合子果实,放置三、四个月不变红、不变软也不形成香气,只有用外源乙烯处理,果实才能成熟变软,成熟果实的质地、色泽、芳香和可压缩性与正常果实相同。同样把pTOM13(ACC氧化酶基因)引入番茄植株,获得反义ACC氧化酶RNA转化植株。该植株在伤害和成熟时乙烯增加都被抑制了,而且抑制程度与转入的基因数相关。利用基因工程改变果实色泽,提高果实品质方面的研究也已取得一定的进展。将反义pTOM5n导入番茄,转基因植株花呈浅黄色,成熟果实呈黄色,果实中检测不到番茄红素。同时采摘并贮藏相同时间图转反义ACC合成酶基因的番茄(左)和其亲本(右)休眠(dormancy)是植物的整体或某一部分生长暂时停顿的现象。生理休眠(深休眠):在适宜的环境条件下,因为植物本身内部的原因而造成的休眠。强迫休眠:由于不利于生长的环境条件引起的植物休眠。01类型02第四节植物的休眠种子休眠形式芽休眠地下部休眠种子休眠的原因胚未成熟;种子内含有抑制萌发的物质种皮障碍(不透水,不透气,对胚具有机械阻碍作用);种子的休眠种子的休眠种子休眠的解除机械破损层积处理:解除种子休眠的方法,即将种子埋在湿砂中置于低温(1~10℃)环境中,放置数月(1~3月)的处理。晒种或加热处理化学药剂处理清水冲洗种子休眠的延长一、种子的休眠(四)种子活力与保存1.种子寿命——种子从成熟到丧失生活力所经历的时间。2.种子活力指种子迅速、整齐发芽出苗的潜在能力。3.种子老化和劣变种子的老化:种子活力的自然衰弱。种子劣变:种子的结构和生理机能的恶化。4.种子的保存正常性种子:指成熟期耐脱水、在干燥和低温条件下能长期贮藏的种子。顽拗性种子:指成熟时有较高的含水量,贮藏中忌干燥和低温的种子。芽休眠二、芽休眠(一)芽休眠原因1.日照长度2.休眠促进物(二)芽休眠调控1.芽休眠的解除(1)低温处理(2)温浴法(3)乙醚气薰法(4)植物生长调节剂2.芽休眠的延长四种类型整体衰老地上部衰老,多年生草本脱落衰老(落叶衰老)渐进衰老(顺序衰老)植物衰老的概念与类型植物的衰老(s