力的合成与分解---大量练习题-大题.doc
文本预览下载声明
试卷第 =page 1 1页,总 =sectionpages 3 3页
试卷第 =page 1 1页,总 =sectionpages 3 3页
1.力的合成
【例1】物体受到互相垂直的两个力F1、F2的作用,若两力大小分别为5N、5 N,求这两个力的合力.N=10 N
合力的方向与F1的夹角θ为: θ=30°
【例2】如图甲所示,物体受到大小相等的两个拉力的作用,每个拉力均为200 N,两力之间的夹角为60°,求这两个拉力的合力.
N=346 N
合力与F1、F2的夹角均为30°.
2.力的分解
力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边/两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
【例3】将放在斜面上质量为m的物体的重力mg分解为下滑力F1和对斜面的压力F2,这种说法正确吗?
解析:从力的性质上看,F2是属于重力的分力,而物体对斜面的压力属于弹力,所以这种说法不正确。
【例4】将一个力分解为两个互相垂直的力,有几种分法?
解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直线,在有向线段的另一端向这条直线做垂线,就是一种方法。如图所示。
(3)几种有条件的力的分解
①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:
①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。如图所示,F2的最小值为:F2min=F sinα
②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα
③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|
(5)正交分解法:
把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
用正交分解法求合力的步骤:
①首先建立平面直角坐标系,并确定正方向
②把各个力向x轴、y轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向
③求在x轴上的各分力的代数和Fx合和在y轴上的各分力的代数和Fy合
④求合力的大小
合力的方向:tanα=(α为合力F与x轴的夹角)
【例5】质量为m的木块在推力F作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪个?
A.μmg B.μ(mg+Fsinθ) C.μ(mg+Fsinθ) D.Fcosθ
B、D答案是正确的.
小结:(1)在分析同一个问题时,合矢量和分矢量不能同时使用。也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量。
(2)矢量的合成分解,一定要认真作图。在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线。
(3)各个矢量的大小和方向一定要画得合理。
(4)在应用正交分解时,两个分矢量和合矢量的夹角一定要分清哪个是大锐角,哪个是小锐角,不可随意画成45°。(当题目规定为45°时除外)
三、应用举例
【例6】水平横粱的一端A插在墙壁内,另一端装有一小滑轮B,一轻绳的一端C固定于墙上,另一端跨过滑轮后悬挂一质量m=10 kg的重物,∠CBA=30°,如图甲所示,则滑轮受到绳子的作用力为(g=10m/s2)
A.50N B.50N C.100N D.100N
解选C。
【例7】轻绳AB总长l,用轻滑轮悬挂重G的物体。绳能承受的最大拉力是2G,将A端固定,将B端缓慢向右移动d而使绳不断,求d的最大可能值。
解:以与滑轮接触的那一小段绳子为研究对象,在任何一个平衡位置都在滑轮对它的压力(大小为G)和绳的拉力F1、F2共同作用下静止。而同一根绳子上的拉力大小F1、F2总是相等的,它们的合力N是压力G的平衡力,方向竖直向上。因此以F1、F2为分力做力的合成的平行四边形一定是菱形。利用菱形对角线互相垂直平分的性质,结合相似形知识可得
d∶l =∶4,所以d最大为
【例8】一根长2m,重为G的不均匀直棒AB,用两根细绳水平悬挂在天花
显示全部