《图像去噪方法综述论文》.doc
文本预览下载声明
图像去噪方法综述
课程名称:数字图像处理
摘 要
图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。数字图像噪声去除涉及光学系统、微电子技术、计算机科学、数学分析等领域,是一门综合性很强的边缘科学,如今其理论体系已十分完善,且其实践应用很广泛在医学、军事、艺术、农业等都有广泛且成熟的应用。MATLAB是一种高效的工程计算语言,在数值计算、数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。MATLAB是一种向量语言,它非常适合于进行图像处理。
小波变换 图像去噪 阈值 MATLAB
引 言
近年来,小波理论得到了非常迅速的发展,而且由于其具备良好的时频特性,实际应用也非常广泛。其中图像的小波阈值去噪方法可以说是众多图像去噪方法的佼佼者。基本思想就是利用图像小波分解后,各个子带图像的不同特性选取不同的阈值,从而达到较好的去噪目的。而且,小波变换本身是一种线形变换,而国内外的研究大多集中在如何选取一个合适的全局阈值,通过处理低于该阈值的小波系数同时保持其余小波系数值不变的方法来降噪,因而大多数方法对于类似于高斯噪声的效果较好,但对于混有脉冲噪声的混合噪声的情形处理效果并不理想。线形运算往往还会造成边缘模糊,小波分析技术正因其独特的时频局部化特性在图像信号和噪声信号的区分以及有效去除噪声并保留有用信息等方面较之传统的去噪具有明显的优势,且在去噪的同时实现了图像一定程度的压缩和边缘特征的提取。所以小波去噪具有无可比拟的优越性。小波去噪主要优点有:
低熵性,小波系数的稀疏分布,使得图象变换后的熵降低;
多分辨率,由于采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等;去相关性, 因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势, 所以小波域比时域更利于去噪;选基灵活性,由于小波变换可以灵活选择变换基, 从而对不同应用场合、不同的研究对象,可以选用不同的小波函数,以获得最佳的效果。本文以图像去噪方法为研究对象,以小波图像去噪为研究方向,对比了传统去噪
方法与小波去噪方法,比较深入地研究了基于小波的图像去噪对其在图像去噪中的应用做了进一步的探讨。
邻域平均法是一种局部空间域处理的算法。设一幅图像为的阵列,处理后的图像为,它的每个像素的灰度级由包含领域的几个像素的灰度级的平均值所决定,即用下式得到处理后的图像: (1-l)
式中s是以点为中心的邻域的集合,M是s内坐标总数。图像邻域平均法的处理效果与所用的邻域半径有关。半径愈大,则图像模糊程度也愈大。另外,图像邻域平均法算法简单,计算速度快,但它的主要是在降低噪声的同时使图像产生模糊,特别在边缘和细节处,邻域越大,模越厉害。
,,…,,取窗口长度为m(m为奇数),对此序列进行中值滤波,就是从输入序列中相继抽出m个数,,…,,…,,…,,…,,其中为窗口的中心位置,,再将这m个点按其数值大小排列,取其序号为正中间的那作为出。用数学公式表示为:
(2-1)
例如:有一个序列为{0,3,4,0,7},则中值滤波为重新排序后的序列{0,0,3,4,7}中间的值为3。此例若用平均滤波,窗口也是取5,那么平均滤波输出为。因此平均滤波的一般输出为:
(2-2)
对于二位序列进行中值滤波时,滤波窗口也是二维的,但这种二位窗口可以有各种不同的形状,如线状、方形、圆形、十字形、圆环形等。二维数据的中值滤波可以表示为: (2-3)
在实际使用窗口时,窗口的尺寸一般先用再取逐渐增大,直到其滤波效果满意为止。对于有缓变的较长轮廓线物体的图像,采用方形或圆形窗口为宜,对于包含尖顶角物体的图像,适宜用十字形窗口。使用二维中值滤波最值得注意的是保持图像中有效的细线状物体。与平均滤波器相比,中值滤波器从总体上来说,能够较好地保留原图像中的跃变部分。
小波变换理论基础
3.1 从傅里叶变换到小波变换
傅立叶变换是一个强有力的数学工具,它具有重要的物理意义,即信号的傅立叶变换表示信号的频谱。正是傅立叶变换的这种重要的物理意义,决定了傅立叶变换在信号分析和信号
显示全部