差异化多敏感属性Lq-Diversity模型和算法-计算机系统应用.PDF
文本预览下载声明
2016 年 第 25 卷 第 2 期 计 算 机 系 统 应 用
差异化多敏感属性 Lq-Diversity 模型和算法①
左苏楠, 卞艺杰, 吴 慧
(河海大学 商学院, 南京 211100)
摘 要: 针对多维敏感属性数据发布面临的一般泄露、交叉泄露、相似性泄露、多维独立泄露的威胁, 本文提出
了敏感属性敏感等级和敏感属性值敏感等级的概念, 基于单维 l-diversity 模型, 对各维敏感属性进行单独分组,
提出了差异化多维敏感属性模型, 验证了该模型在面向多敏感属性数据发布的安全性, 并根据此模型提出了相
应的 DMSA 算法, 通过实验验证, 该算法正确可行, 且隐匿率和附加信息损失度的值都很低, 数据可用性高, 具
有良好的隐私保护效果.
关键词: 多敏感属性; 敏感属性敏感等级; 敏感属性值敏感等级; lq-diversity 模型; DMSA 算法
Lq-Diversity Model and Algorithm of Differentiated Multisensitive Property
ZUO Su-Nan, BIAN Yi-Jie, WU Hui
(Business School, Hohai university, Nanjing 211100, China)
Abstract: According to the threats of general leakage, cross leakage, similar leakage and multidimensional independent
leakage in redistribution of data of multi sensitive attributes, this paper puts forward the concept of sensitive attribute
sensitivity level and sensitivity level of sensitive attribute values. Then, it separates each dimension of sensitive
attributes based on l-diversity model. It also puts forward the lq-diversity model of differentiated multi sensitive property.
Experiments prove that it is safe for the distribution of data of multiple sensitive attributes. Finally, according to
lq-diversity model, the paper puts forward a corresponding DMSA algorithm, which is proved to be correct and feasible,
and has low occult rate and loss degree of additional information. The result indicates data has high availability and good
privacy after released with this method.
Key words: multisensitive attributes; sensitive level of sensitive attribute; sensitive level of sensitive attribute values;
lq-diversity model; DMSA algorithm
数据发布隐私保护的关键是提防攻击者选择某一具 k-anonymity 模型,该模型具有很好的隐私保护效果, 但
[1]
体个体的信息而导
显示全部