多能源互补的分布式供能系统.pdf
文本预览下载声明
多能源互补的分布式供能系统
链接:/tech/42473.html
来源:中科院
多能源互补的分布式供能系统
分布式冷热电联供系统(以下称CCHP系统)作为一种由动力、余热利用及蓄能等多个子系统集成构成的复杂系统
,目前尚处于快速发展的阶段,正在得到逐步深入的研究。CCHP系统的构成特点是输入与输出的能源形式以及内部
的构成形式均具有显著的多样性。它是由多种形式的热力过程和多个供能系统所集成的总能系统,其内部相对独立的
各个热力子系统之间存在大量的能量、物质传递和交换过程。它的总体性能不仅与各子系统的具体形式和性能参数有
关,更为重要的是还取决于系统构成流程形式以及各子系统间的热力参数匹配情况。在CCHP系统的设计、优化和运
行过程中涉及到两种类型工况,即设计工况和变工况,且两者存在本质差异。在联产系统的配置和优化过程中,对两
种工况都需要关注。CCHP系统集成要综合考虑上述诸多复杂因素,不断丰富和完善,形成系统集成优化的理论体系
。基于能的梯级利用、不同形式能量间的互补和全工况运行等原理,本文介绍CCHP系统集成优化的理论框架,其中
包括能的综合梯级利用,能源、资源与环境的综合互补,以及基于全工况特性的系统集成等CCHP系统的集成优化思
路及措施。
1.基于能的综合梯级利用的系统集成
(1)热能品位对口,梯级利用
CCHP系统中,通常高品位的热能多来自于化石燃料燃烧。而中、低品位的热能主要来自于联产系统上游某热力子
系统的输出,但有时也可能来自于联产系统相关外界的可再生能源系统或外界环境。因此,在利用中温和低温热能时
,需要对用户的需求以及各个热力子系统的功能进行仔细分析。动力子系统的输出为高品位的电,因而对输入热能的
品位要求很高。对于吸收式制冷机和吸收式热泵而言,需要的热源温度则更低一些,如双效溴化锂吸收式制冷机要求
热源温度在120℃左右。而用户需要的生活热水和供暖所需热量的温度只需60℃左右。由此可见,燃料燃烧产生的高
热量应优先用于提供给动力子系统,做功发电,经过这一级利用后,再为吸收循环提供热源,驱动制冷或热泵,温度
进一步降低后,再通过简单换热生产热水。经过上述若干级热能利用后,动力子系统排气中余热的品位大幅度降低,
可利用的数量也大幅度减少,利用价值显著下降,无利用意义的余热最后将被直接排向环境。
(2)正循环与逆循环耦合
分布式联产系统常常是由多个循环集成得到的总能系统。联产系统所采用的循环基本上可分为两大类,即正循环和
逆循环。动力子系统的功能在于输出电,目前普遍采用的传统热转功系统属于正循环。制冷子系统通常利用动力子系
统的余热驱动的吸收式制冷循环,输出低于环境温度的冷量,属于逆循环。在CCHP系统中,正是通过正循环和逆循
环的耦合来实现冷热电的多能源供应。正逆循环耦合的关键在于两循环之间能量传递与转换利用时,量与质同时优化
匹配,以最大程度降低能量转换利用过程的损失。通常,动力正循环和制冷逆循环运行的温度区间分别位于环境状态
以上和以下,两者具有多方面的互补性。在此基础上,将动力系统与制冷系统进行系统集成,构成正逆耦合循环,即
制冷系统的高温换热器充当动力系统的低温热源,而动力系统的排热充当制冷系统的高温驱动热源,两种系统的有效
整合可大幅度提高联产系统的性能。
(3)热力循环与非热力循环耦合
高温燃料电池等新型动力系统,采用的不是传统意义上的热力循环。若把它们和传统热力循环耦合,则可以充分体
现燃料的化学能与物理能综合梯级利用,将可以达到更高的能源利用率。燃料电池可以单独作为联产系统的动力子系
统,也可以与传统热机(如燃气轮机、内燃机等)共同构成复合动力子系统。单独作为动力子系统时,燃料的化学能
在燃料电池中直接转换为电,未转化部分可在余热锅炉、余热型机组等热量回收装置中通过二次燃烧转化为热能,然
后与来自燃料电池的高温热能混合,再到制冷子系统、供热子系统对其进行梯级利用。在由复合动力子系统驱动的联
产系统中,未被燃料电池有效利用的化学能在后面流程的热机中燃烧转化为热能,再与上游的高温热能混合共同进行
热功转换,最后用于制冷、供热。与传统热机构成的联产系统相比,这种热力循环与非热力循环耦合的联产系统增加
了对化学能的直接利用,降低了燃料利用过程中的品位损失。
(4)中低温热能与燃料转换反应集成
在CCHP系统集成时,可利用合适的热化学反应(例如重整或热解)对燃料进行预处理,而且该过程可与尾部的热
力系统整合在一起。对燃料进行的热化学预处理,可将较低品位的热能转化为合成气燃料的化学能,以合成气燃料的
形
显示全部