文字资料分析题还经常涉及一些其他的统计术语.doc
文本预览下载声明
文字资料分析题还经常涉及一些其他的统计术语,下面,专家挑选出现频率较高的一些术语为大家辨析讲解。
(一)序时平均数、平均发展速度、平均增长速度
1.序时平均数
序时平均数是将动态数列中各时期或时点上的指标加以平均而得的平均数。这种平均数是将某种事物在时间上变动的差异平均化,用以说明一段时期内的一般水平。
序时平均数(又称动态平均数)是与一般平均数(静态平均数)不相同的又一种类型的平均数。两者的差别在于:
(1)一般平均数是根据同一时期的标志总量与总体总量计算的;而序时平均数是根据不同时期的总量指标计算的。
(2)一般平均数所平均的是总体内各单位某一标志值的差别;而序时平均数所平均的是总体的某一总量指标在时间上的变动差别。
(3)一般平均数通常是由变量数列计算的;而序时平均数是由动态数列计算的。可见序时平均数不论从性质上或计算上都与一般平均数不相同。
2.平均发展速度
平均发展速度是动态数列中各期环比发展速度和各期定基发展速度中的环比发展速度的序时平均数。它说明在一定时期内发展速度的一般水平。根据这一定义,平均发展速度的计算方法有几何法和方程法。
3.平均增长速度
因平均增长速度不等于全期各环比增长速度的连乘积,故它不能根据各环比增长速度进行直接计算。但可以利用平均增长速度等于平均发展速度减去1(或百分之百)进行间接计算。
(二)增幅与同比增长
1.增幅
增幅与增加幅度是一个概念,指的是速度类、比例类的增加幅度,比如,今年5月GDP的发展速度是10%,去年5月是9%,我们就可以说GDP发展速度的增幅是1个百分点;如果说去年是10%,今年增幅为9%,那么今年的发展速度就用10%×(1+9%)得到。
2.同比增长
同比增长是指相对于去年同期增长百分之多少。比如,去年5月完成8万元,今年5月完成10万元,同比增长就应该用(10-8)÷8×100%即可。
(三)基尼系数与恩格尔系数
1.基尼系数
基尼系数可以衡量收入差距,是介于0~1之间的数值。基尼系数为0表示绝对平等;基尼系数越大,表示不平等程度越高;为1时表示绝对???平等。一般标准是:在0.2以下表示绝对平均;0.3~0.4之间表示比较合理;0.5以上表示差距悬殊。
2.恩格尔系数(%)
恩格尔系数指食品支出总额占消费总支出的百分比。所以它可以衡量一个地区或者一个国家的贫富程度,越穷,此系数越大;反之,生活越富裕,此系数越小。
(四)强度指标
两个性质不同但有一定联系的指标对比,来说明现象的强度、密度和普遍程度。比如:人均国内生产总值用总量除以总人口得到(元/人)表示;人口密度用“人/平方公里”,即总人口除以这个地区的总面积。
?
抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
先来看抽屉原理的一般叙述:
抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。
抽屉原理(2):将多于 件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。其中 k=〔m/n 〕 ,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。
掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。 接着制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 最后运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。
下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。
例1:证明任取6个自然数,必有两个数的差是5的倍数。
证明:考虑每个自然数被5除所得的余数。即自然数可以作为物品,被5除所得余数可以作为抽屉。显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。运用抽屉原理,考虑“最坏”的情况,先从每个抽屉中各取一个“
显示全部