动态规划法学习报告.docx
文本预览下载声明
现代控制理论学习报告动态规划法1、概述:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。本文简要介绍了动态规划的基本概念,并通过一个实例说明其在现实生活中的应用。2、基本思想:动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。该方法主要应用于最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解。若存在若干个取最优值的解的话,它只取其中的一个。但是首先要保证该问题的无后效性,即无论当前取哪个解,对后面的子问题都没有影响.在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,(亦即各子问题可包含公共的子子问题)也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。 因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。3、基本步骤:动态规划设计都有着一定的模式,一般要经历以下几个步骤:1、划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。2、确定状态:将问题发展到各个阶段时所处的各种客观情况用不同的状态表示出来。3、确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态,所以如果确定了决策,状态转移方程也就可以写出。4、寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。5、程序设计实现:动态规划的主要难点在于理论上的设计,一旦设计完成,实现部分就会非常简单。根据以上的步骤设计,可以得到动态规划设计的一般模式:for k:=阶段最小值to 阶段最大值do {顺推每一个阶段}for I:=状态最小值to 状态最大值do {枚举阶段k的每一个状态}for j:=决策最小值to 决策最大值do {枚举阶段k中状态i可选择的每一种决策}f[ik]:=min(max){f[ik-1]+a[ik-1,jk-1]|ik-1通过决策jk-1可达ik}有了以上的设计模式,对于简单的动态规划问题,就可以按部就班地进行动态规划设计。4、适用条件:任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后向性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。有些问题乍一看好像有后向性,但如果按照某种合理的方式重新划分阶段,就可以发现其本质上是无后向性的,所以关键是阶段的合理划分,这一点将在动态规划的技巧中详细阐述。3.子问题的重叠性动态规划可以将原来具有指数级复杂度的搜索算法改进成具有多项式时间的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它
显示全部