2014年中考数学压轴题分类汇编与特殊四边形有关的填空题【含答案】.doc
文本预览下载声明
2014年中考数学分类汇编——与特殊四边形有关的填空压轴题
【题1】如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为 .
分析: 连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.
解答: 解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,
∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,
设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,
又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.
在RT△END′中,设ED′=a,
①当MD′=3时,D′=5﹣3=2,EN=7﹣CN﹣DE=7﹣3﹣a=4﹣a,
∴a2=22+(4﹣a)2,解得a=,即DE=,
②当MD′=4时,D′=5﹣4=1,EN=7﹣CN﹣DE=7﹣4﹣a=3﹣a,
∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.
如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为 .
分析: 根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.
解答: 解:将△DAF绕点A顺时针旋转90度到△BAF′位置,
由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,
∴∠EAF′=45°,在△FAE和△EAF′中
,∴△FAE≌△EAF′(SAS),∴EF=EF′,
∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,∴2BC=4,∴BC=2.故答案为:2.
如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是正方形ABCD的中心;②当x=时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的是 (写出所有正确判断的序号).分析: (1)由正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,得出△BEF和△三DGH是等腰直角三角形,所以当AE=1时,重合点P是BD的中点,即点P是正方形ABCD的中心;(2)由△BEF∽△BAC,得出EF=AC,同理得出GH=AC,从而得出结论.
(3)由六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.得出函数关系式,进而求出最大值.
(4)六边形AEFCHG周长=AE+EF+FC+CH++HG+AG=(AE+CF)+(FC+AG)+(EF+GH)求解.
解答: 解:(1)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,
∴△BEF和△三DGH是等腰直角三角形,∴当AE=1时,重合点P是BD的中点,
∴点P是正方形ABCD的中心;故①结论正确,
(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,
∴△BEF∽△BAC,∵x=,∴BE=2﹣=,∴=,即=,∴EF=AC,同理,GH=AC,
∴EF+GH=AC,故②结论错误,
(3)六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.
∵AE=x,∴六边形AEFCHG面积=22﹣BE?BF﹣GD?HD=4﹣×(2﹣x)?(2﹣x)﹣x?x=﹣x2+2x+2=﹣(x﹣1)2+3,∴六边形AEFCHG面积的最大值是3,故③结论错误,
(4)当0<x<2时,∵EF+GH=AC,
六边形AEFCHG周长=AE+EF+FC+CH++HG+AG=(AE+CF)+(FC+AG)+(EF+GH)=2+2+2=4+2
故六边形AEFCHG周长的值不变,故④结论正确.故答案为:①④.
,AB=2,则图中阴影部分的面积为______.
【】,从而求出Rt△AOC的面积,再减去△ACD的面积得阴影部分AOCD面积,一共有四个这样的面积,乘以4即得解。
解:连接BD、AC,相交于点E,连接AO、CO。
∵因为四边形ABCD是菱形,∴AC ⊥BD,AB=AD=2。
∵∠BAD=60°,∴△ABD是等边三角形,BD=AB=2,
∴∠BAE=∠BAD=30°,AE=AC,BE=DE=BD=1,
在Rt△ABE中,AE=,∴AC=2
显示全部