应变测量技术在工程机构中的应用.doc
文本预览下载声明
1. 前 言
1.1概述
1.1.1电阻应变测量技术简介
电阻应变计测量技术是通过电阻应变计测定构件的表面应变,再根据应力、应变的关系式,确定构件表面应力状态的一种实验应力分析方法。将电阻应变计的电阻应变片固定黏贴在被测构件上,构件变形时,应变计的电阻将发生相应变化。把电阻应变仪的电阻变化,换算成应变值;或输出与应变成正比的模拟电信号(电压的或电流的),由记录器记录下来;或用计算机按预定要求进行数据处理;用上述方法都可得到所测的应力或应变。
1.1.2电阻应变测量技术的优缺点
电阻应变计测量技术的优点是:①测量精度和灵敏度高;②频率响应好,可测量从静态到数十万赫的动态应变;③测量数值范围广;④易于实现测量的数字化、自动化和无线电遥测;⑤可在高温、低温、高压液下、高速旋转、强磁场和核辐射等环境进行测量;⑥可制成各种传感器,测量力、压力、位移、加速度等物理量,在工业过程和科学实验中用作控制或监视的敏感元件。电阻应变计的主要缺点是:①一个应变计只能测定构件表面一点在某个方向的应变;②只能测得栅长范围内的平均应变。
1.1.3电阻应变测量技术的发展简史
电阻应变计测量技术,起源于19世纪。1856年,W.汤姆孙对金属丝进行了拉伸试验,发现金属丝的应变和电阻的变化有一定的函数关系,说明应变关系可转换为电流变化的关系,可用电学方法测定应变。1938年,E.西蒙斯和A.鲁奇制出了第一批实用的纸基丝绕式电阻应变计。1953年,P.杰克孙利用光刻技术,首次制成了箔式应变计。随着微光刻技术的进展,这种应变计的栅长可短到0.178毫米。1954年,C.S.史密斯发现半导体材料的压阻效应,1957年,W.P.梅森等研制出半导体应变计,其灵敏系数比金属丝应变计高50倍以上,现已用于测量力、扭矩和位移等的传感器上。
电阻应变计品种繁多,包括有分别适用于高温、低温、强磁场和核辐射等条件的,以及用于测量残余应力和应力集中的特殊应变计。??? ?早期的电阻应变计测量仪器,用直流电桥和检流计显示的方法测量应变,其灵敏度和精度都比较差,20世纪40年代,出现由可调节的测量电桥和放大器组成的电阻应变仪,使电阻应变计在工程技术和科学实验领域内获得广泛的应用。为了克服直流放大器信号的漂移和线性精度差等缺点,传统的电阻应变仪都采用交流放大器,以载波放大方式传递信号。这种仪器的性能稳定,其精度能满足一般的测试要求,但它的工作频率受载波频率的限制,而且存在电容、电感影响测量精度等问题。60年代,出现了采用直流放大器的电阻应变仪。电阻应变仪正朝向数字化、自动化和多功能方向发展,已有用于静态应变测量数字显示的应变仪和多点自动巡回检测的应变测量装置,以及用于动态应变测量的数据采集处理系统等产品。电阻应变计测量技术在机械、化工、土建、航空等部门的结构强度试验中,获得了广泛的应用。
1.1.4电阻应变测量技术的应用范围
电阻应变测量技术的应用范围十分广泛,适用的结构包括航空、航天器、原子能反应堆、桥梁、道路、大坝以及各种机械设备、建筑物等;适用的材料包括:钢铁、铝、木材、塑料、玻璃、土石、复合材料等各种金属及非金属材料。并且,它不仅适用于室内实验、模型试验,还可以在现场对实际结构或部件进行测量,这些特点是任何一种应变测量技术所不能比拟的。另外,它在对结构和设备的安全监测方面也有着广泛的应用前景。
1.1.5电阻应变测量的前沿技术
(1)高温或低温条件下的应变测量。现在已经有适用于-270~800℃的各种类型的电阻应变计和粘结剂。进行短时间的动态应变测量时,环境温度可高达1000℃。在高温或低温条件下,应变计的热输出常常超过所测的应变,故必须采取有效的补偿方法。但由于这种热输出的分散性大和重复性差,不能做到完全补偿。另外,粘结剂的蠕变、绝缘电阻的变化和敏感栅的氧化等,也会引起应变读数的变化,加上灵敏系数随温度改变,及其测量的误差,都会影响应变测量的准确性。因此,用电阻应变计测量高温或低温条件下的应变时,其精度比常温条件下差。???? (2)高速旋转构件的应变测量。采用电阻应变计测量高速旋转构件的应变时,除了必须解决应变计的防护和温度补偿问题以外,应着重的是解决装在旋转构件上的应变计和测量仪器之间的信号传递。一般用的集流器有拉线式、炭刷式、水银式和感应式四种,后三种可用于测量转速在 10000转/分以上的构件的应变。无线电应变遥测装置可装在无法安装集流器的密封旋转构件上,它能消除集流器因接触电阻而产生的噪声信号(见应变遥测技术)。???? (3)高压液下的应变测量。电阻应变计可用于测量高压液体介质容器内壁的应变,但由于电阻应变计处在高压液态介质中工作,必须解决应变计的防护、引线的引出以及压力效应等问题。一般对于油类的绝缘介质,应变计不需采取防护措施。对于在水下工作的应变计
显示全部