《数形结合思想在解题中的应用》毕业学术论文.doc
文本预览下载声明
PAGE
数形结合思想在解题中的应用
张上兰
湛江师范学院 数学与计算科学学院 广东 湛江 524048
摘要:本文揭示了初中数学中的有理数、一次函数、一元一次方程、二元一次方程组、一元一次不等式(组)、二次函数、一元二次方程、一元二次不等式它们在图象上达到高度的统一,构建了数学的和谐美,充分显示了数形结合思想在解题中的魅力. 数形结合能不失时机地为学生提供恰当的形象材料,可以将枯燥的知识趣味化,把算理变明晰,把学生头脑中模糊的概念变清晰,把复杂的问题变得更加简单,经抽象的知识变得直观. 这样不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效,从而让学生体会到数学教学充满乐趣.
关键词:数形结合;几何意义;应用.
数形结合的思想方法是初中数学中一种重要的思想方法. 数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维与形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图形性质或其位置关系的讨论,或把图形间的待定关系转化为相关元素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答就是数形结合的思想方法. 数形结合的思想方法能扬数之长、取形之优,使得“数量关系”与“空间形式”珠连壁合,交相辉映. 下面我从四个方面谈谈数形结合思想方法在初中数学教学解题中的应用.
1 以“数”化“形”
由于“数”和“形”是一种对应,有些数量比较抽象,我们难以把握,而“形”具有形象,直观的优点,能表达较多具体的思维,起着解决问题的定性作用,因此我们可以把“数”的对应——“形”找出来,利用图形来解决问题.我们能够从所给问题的情境中辨认出符合问题目标的某个熟悉的“模式”,这种模式是指数与形的一种特定关系或结构.这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法.数量问题图形化是数量问题转化为图形问题的条件,将数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为图形问题.解一个数学问题,一般来讲都是首先对问题的结构进行分析,分解成已知是什么(条件),要求得到的是什么(目标),然后再把条件与目标相互比较,找出它们之间的内在联系.因此,对于“数”转化为“形”这类问题,解决问题的基本思路: 明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,最后利用已经作出或构造出的图形的性质、几何意义等,联系所要求解(求证)的目标去解决问题.
1.1 有理数教学中体现的数形结合思想 ?
数轴的引入是有理数体现数形结合思想的力量源泉. 由于对每一个有理数,数轴上都有唯一确定的点与它对应,因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的(实数的大小比较也是如此). 相反数、绝对值概念则是通过相应的数轴上的点与原点的位置关系来刻画的. 尽管我们学习的是(有理)数,但要时刻牢记它的形(数轴上的点),通过渗透数形结合的思想方法,帮助学生正确理解有理数的性质及其运算法则. 相关内容的中考试题,应用数形结合的思想可顺利得以解决.
1.2 不等式(组)中蕴藏着数形结合思想 北师大版八年级《数学》下册第一章内容是“一元一次不等式和一元一次不等式组”.教学时,为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无限多个解.这里蕴藏着数形结合的思想方法. 在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步.确定一元一次不等式组的?解集时,利用数轴更为有效. 相关内容的中考试题,也着重考察学生对数形结合思想方法的应用.
2 以“形”变“数”
虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂 的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算.
解题的基本思路: 明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式表达出来,再根据条件和结论的联系,利用相应的公式或定理等.
2.1 二元一次方程组、一元一次不等式的
显示全部