单摆的研究实验报告.doc
文本预览下载声明
精品学习资料范文
单摆的研究实验报告
篇一:实验报告单摆的设计与研究
肇庆学院
电子信息与机电工程 学院 普通物理实验 课 实验预习报告
班组 实验合作者 实验日期 姓名: 王英 学号29号 老师评定
实验题目:
实验简介
单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。
设计任务与要求
1、用误差均分原理设计一单摆装置,测量重力加速度,测量精度要求
?g
?2%。 g
2、 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求。 3、自拟实验步骤研究单摆周期与质量、空气阻力等因素的关系,试分析各项误差的大小。
设计的原理思想
一根不可伸长的细线,上端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置称为单摆,如图1所示。如果把小球稍微拉开一定距离,小球在重力作用下可在铅直平面内做往复运动,一个完整的往复运动所用的时间称为一个周期。当单摆的摆角很小(一般θ 5°)时,可以证明单摆的周期T满足下面公式
T?2?L(1) g
g?4?2L2(2) T
式中L为单摆长度。单摆长度是指上端悬挂点到球心之间的距离;g为重力加速度。如果测量得出周期T、单摆长度L,利用上面式子可计算出当地的重力加速度g。从上面公式知T 2和L具有线性关系,
2
24?即T?L。对不同的单摆长度L测量得出相对应的周期,可由T ~L图线的斜率求出g值。
g
2
测量方案的制定和仪器的选择
本实验测量结果的相对误差要求?2℅,由误差理论可知,g的相对误差为子可以看出,在ΔL、Δt大体一定的情况下,增大L和t对测量g有利。 由误差均分原理的要求,各独立因素的测量引入的测量误差应相等,则 (
?g?L?t
?()2?(2)2从式gLt
?L2
)?(1%)2,本实验中单摆的L
摆长约为100cm,可以计算出摆长的测量误差要求为 ΔL 1cm,故选择米尺测量一次就足以满足测量要求;
1
同理 (2
?t2
)?(1%)2,当摆长约为1m时,单摆摆动周期约为2秒,可以计算出周期的测量误差要求t
为Δt ?0.01s,要作到单次测量误差小于0.01s相当不容易,停表的误差主要是由判断计时开始和终止时的不准确以及动作反应快慢所产生的,因而可以采用连续测量多个周期来减小每个周期的误差,若每次测量引入约四分之一周期的误差,即0.5s则连续72次的周期测量即可满足测量误差的要求。
实验步骤的设计
1、 测量摆长L:取摆长大约1m,测量悬线长度l0 六次及小球直径D一次,求平均得?0?2、 粗测摆角θ:应确保摆角θ 5 °。
3、 测量周期T:计时起点选在摆球经过平衡位置的时刻,用停表测出单摆摆动50次的时间 T50,共测量6次,取平均值。
4、 计算重力加速度:将测出的 和T50代入 g?4?2
算出重力加速度g,并计算出测量误差。
5、用金属作为摆线,以改变摆线的质量,以研究摆线质量对测g的影响 6、用乒乓球作为摆球,形容空气浮力对测g影响
中(其中n为周期的连续测量次数),计2
(n/n)
D 2
实验记录和数据处理
1、 重力加速度g
对摆长为L的单摆,测量在??5的情况下,测量连续摆动n次的周期 说明:
(1)摆长L应是摆线长加小球的半径(如图2)。L=l-(d /2) (2)球的振幅小于摆长的
?
1?
时,??5。 12
(3)握停表的手和小球同步运动,测量误差可能小些。
(4)当摆锤过平衡位置O?时,按表计时,测量误差可能小些。 (5)为了防止数错n值,应在计时开始时数“零”,以后每过一个周期,数1,2,…..,n。 实验记录和数据处理
1、用米尺(量程:2m,分度值:1mm)测摆线长
2、用游标卡尺(量程:125cm,分度值:0.02mm)测求的直径d 3、用电子秒表(分度值:0.01s)测n=50的t值
=9.78msg?4?22?4?2T(n/n)2
2
U(
g)U(L)2U(t)2
?()?(2)=0.58% U(g)=0.06
显示全部