文档详情

bp神经网络原理资料.pptx

发布:2020-02-24约小于1千字共19页下载文档
文本预览下载声明
BP神经网络原理 ;BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处??输出误差最小的经过非线形转换的信息。 ;BP神经网络模型 ;2作用函数模型 作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数:? f(x)=1/(1+e-x)?;( 3)误差计算模型 误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数: ??????????????????? Ep=1/2×∑(tpi-Opi)2?????????????? tpi- i节点的期望输出值;Opi-i节点计算输出值。 (4)自学习模型 神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵Wij的设定和误差修正过程。BP网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。自学习模型为 ?????????? △Wij(n+1)= h ×Фi×Oj+a×△Wij(n) h -学习因子;Фi-输出节点i的计算误差;Oj-输出节点j的计算输出;a-动量因子。;BP网络模型的缺陷分析及优化策略 ;;优化BP神经网络在系统安全评价中的应用 ;基于优化BP神经网络的系统安全评价模型 ;BP神经网络在系统安全评价中的应用实现 ;;BP神经网络理论应用于系统安全评价中的优点 ;BP神经网络收敛速度 ;;BP神经网络设计步骤 ;;;;
显示全部
相似文档